TY - JOUR
T1 - Synbiotic Intervention with Lactobacilli, Bifidobacteria, and Inulin in Healthy Volunteers Increases the Abundance of Bifidobacteria but Does Not Alter Microbial Diversity
AU - Rubin, Ingrid Maria Cecilia
AU - Mollerup, Sarah
AU - Broholm, Christa
AU - Baker, Adam
AU - Holm, Mona Katrine Alberthe
AU - Pedersen, Martin Schou
AU - Pinholt, Mette
AU - Westh, Henrik
AU - Petersen, Andreas Munk
PY - 2022/10/11
Y1 - 2022/10/11
N2 - Synbiotics combine probiotics and prebiotics and are being investigated for potential health benefits. In this single-group-design trial, we analyzed changes in the gut microbiome, stool quality, and gastrointestinal well-being in 15 healthy volunteers after a synbiotic intervention comprising Lacticaseibacillus rhamnosus (LGG), Lactobacillus acidophilus (LA-5), Lacticaseibacillus paracasei subsp. paracasei (L. CASEI 431), and Bifidobacterium animalis subsp. lactis BB-12 and 20 g of chicory-derived inulin powder consumed daily for 4 weeks. Fecal samples were collected at baseline and at completion of the intervention, and all participants completed a fecal diary based on the Bristol Stool Scale and recorded their gastrointestinal well-being. No adverse effects were observed after consumption of the synbiotic product, and stool consistency and frequency remained almost unchanged during the trial. Microbiome analysis of the fecal samples was achieved using shotgun sequencing followed by taxonomic profiling. No changes in alpha and beta diversity were seen after the intervention. Greater relative abundances of Bifidobacteriaceae were observed in 12 subjects, with indigenous bifidobacteria species constituting the main increase. All four probiotic organisms increased in abundance, and L. rhamnosus, B. animalis, and L. acidophilus were differentially abundant, compared to baseline. Comparison of the fecal strains to the B. animalis subsp. lactis BB-12 reference genome and the sequenced symbiotic product revealed only a few single-nucleotide polymorphisms differentiating the probiotic B. animalis subsp. lactis BB-12 from the fecal strains identified, indicating that this probiotic strain was detectable after the intervention. IMPORTANCE The effects of probiotics/synbiotics are seldom investigated in healthy volunteers; therefore, this study is important, especially considering the safety aspects of multiple probiotics together with prebiotic fiber in consumption by humans. The study explores at the potential of a synbiotic intervention with lactobacilli, bifidobacteria, and inulin in healthy volunteers and tracks the ingested probiotic strain B. animalis subsp. lactis.
AB - Synbiotics combine probiotics and prebiotics and are being investigated for potential health benefits. In this single-group-design trial, we analyzed changes in the gut microbiome, stool quality, and gastrointestinal well-being in 15 healthy volunteers after a synbiotic intervention comprising Lacticaseibacillus rhamnosus (LGG), Lactobacillus acidophilus (LA-5), Lacticaseibacillus paracasei subsp. paracasei (L. CASEI 431), and Bifidobacterium animalis subsp. lactis BB-12 and 20 g of chicory-derived inulin powder consumed daily for 4 weeks. Fecal samples were collected at baseline and at completion of the intervention, and all participants completed a fecal diary based on the Bristol Stool Scale and recorded their gastrointestinal well-being. No adverse effects were observed after consumption of the synbiotic product, and stool consistency and frequency remained almost unchanged during the trial. Microbiome analysis of the fecal samples was achieved using shotgun sequencing followed by taxonomic profiling. No changes in alpha and beta diversity were seen after the intervention. Greater relative abundances of Bifidobacteriaceae were observed in 12 subjects, with indigenous bifidobacteria species constituting the main increase. All four probiotic organisms increased in abundance, and L. rhamnosus, B. animalis, and L. acidophilus were differentially abundant, compared to baseline. Comparison of the fecal strains to the B. animalis subsp. lactis BB-12 reference genome and the sequenced symbiotic product revealed only a few single-nucleotide polymorphisms differentiating the probiotic B. animalis subsp. lactis BB-12 from the fecal strains identified, indicating that this probiotic strain was detectable after the intervention. IMPORTANCE The effects of probiotics/synbiotics are seldom investigated in healthy volunteers; therefore, this study is important, especially considering the safety aspects of multiple probiotics together with prebiotic fiber in consumption by humans. The study explores at the potential of a synbiotic intervention with lactobacilli, bifidobacteria, and inulin in healthy volunteers and tracks the ingested probiotic strain B. animalis subsp. lactis.
KW - Bifidobacterium
KW - Bifidobacterium animalis
KW - Feces/microbiology
KW - Healthy Volunteers
KW - Humans
KW - Inulin
KW - Lactobacillus
KW - Lactobacillus acidophilus
KW - Nucleotides
KW - Powders
KW - Prebiotics
KW - Probiotics/pharmacology
KW - Synbiotics
KW - bifidobacteria
KW - fecal
KW - lactobacilli
KW - microbiome
KW - inulin
KW - shotgun
KW - metagenomics
KW - prebiotics
KW - synbiotics
KW - probiotics
UR - http://www.scopus.com/inward/record.url?scp=85139739702&partnerID=8YFLogxK
U2 - 10.1128/aem.01087-22
DO - 10.1128/aem.01087-22
M3 - Journal article
C2 - 36165644
VL - 88
SP - e0108722
JO - Applied and Environmental Microbiology
JF - Applied and Environmental Microbiology
SN - 0099-2240
IS - 19
ER -