TY - JOUR
T1 - Structural basis for PoxtA-mediated resistance to phenicol and oxazolidinone antibiotics
AU - Crowe-McAuliffe, Caillan
AU - Murina, Victoriia
AU - Turnbull, Kathryn Jane
AU - Huch, Susanne
AU - Kasari, Marje
AU - Takada, Hiraku
AU - Nersisyan, Lilit
AU - Sundsfjord, Arnfinn
AU - Hegstad, Kristin
AU - Atkinson, Gemma C.
AU - Pelechano, Vicent
AU - Wilson, Daniel N.
AU - Hauryliuk, Vasili
N1 - Publisher Copyright:
© 2022, The Author(s).
PY - 2022/12
Y1 - 2022/12
N2 - PoxtA and OptrA are ATP binding cassette (ABC) proteins of the F subtype (ABCF). They confer resistance to oxazolidinone and phenicol antibiotics, such as linezolid and chloramphenicol, which stall translating ribosomes when certain amino acids are present at a defined position in the nascent polypeptide chain. These proteins are often encoded on mobile genetic elements, facilitating their rapid spread amongst Gram-positive bacteria, and are thought to confer resistance by binding to the ribosome and dislodging the bound antibiotic. However, the mechanistic basis of this resistance remains unclear. Here we refine the PoxtA spectrum of action, demonstrate alleviation of linezolid-induced context-dependent translational stalling, and present cryo-electron microscopy structures of PoxtA in complex with the Enterococcus faecalis 70S ribosome. PoxtA perturbs the CCA-end of the P-site tRNA, causing it to shift by ∼4 Å out of the ribosome, corresponding to a register shift of approximately one amino acid for an attached nascent polypeptide chain. We postulate that the perturbation of the P-site tRNA by PoxtA thereby alters the conformation of the attached nascent chain to disrupt the drug binding site.
AB - PoxtA and OptrA are ATP binding cassette (ABC) proteins of the F subtype (ABCF). They confer resistance to oxazolidinone and phenicol antibiotics, such as linezolid and chloramphenicol, which stall translating ribosomes when certain amino acids are present at a defined position in the nascent polypeptide chain. These proteins are often encoded on mobile genetic elements, facilitating their rapid spread amongst Gram-positive bacteria, and are thought to confer resistance by binding to the ribosome and dislodging the bound antibiotic. However, the mechanistic basis of this resistance remains unclear. Here we refine the PoxtA spectrum of action, demonstrate alleviation of linezolid-induced context-dependent translational stalling, and present cryo-electron microscopy structures of PoxtA in complex with the Enterococcus faecalis 70S ribosome. PoxtA perturbs the CCA-end of the P-site tRNA, causing it to shift by ∼4 Å out of the ribosome, corresponding to a register shift of approximately one amino acid for an attached nascent polypeptide chain. We postulate that the perturbation of the P-site tRNA by PoxtA thereby alters the conformation of the attached nascent chain to disrupt the drug binding site.
UR - http://www.scopus.com/inward/record.url?scp=85127639432&partnerID=8YFLogxK
U2 - 10.1038/s41467-022-29274-9
DO - 10.1038/s41467-022-29274-9
M3 - Journal article
C2 - 35387982
AN - SCOPUS:85127639432
VL - 13
JO - Nature Communications
JF - Nature Communications
SN - 2041-1722
IS - 1
M1 - 1860
ER -