Forskning
Udskriv Udskriv
Switch language
Region Hovedstaden - en del af Københavns Universitetshospital
Udgivet

Stronger findings from mass spectral data through multi-peak modeling

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

DOI

  1. Deconvolution of autoencoders to learn biological regulatory modules from single cell mRNA sequencing data

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  2. WISH-R- a fast and efficient tool for construction of epistatic networks for complex traits and diseases

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  3. spliceR: an R package for classification of alternative splicing and prediction of coding potential from RNA-seq data

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  4. Estimation of allele frequency and association mapping using next-generation sequencing data

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  1. Gut microbiota profile and selected plasma metabolites in type 1 diabetes without and with stratification by albuminuria

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  2. Characterization of plasma lipidomics in adolescent subjects with increased risk for type 1 diabetes in the DiPiS cohort

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  3. Circulating Metabolites and Lipids Are Associated to Diabetic Retinopathy in Individuals With Type 1 Diabetes

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

Vis graf over relationer

Background: Mass spectrometry-based metabolomic analysis depends upon the identification of spectral peaks by their mass and retention time. Statistical analysis that follows the identification currently relies on one main peak of each compound. However, a compound present in the sample typically produces several spectral peaks due to its isotopic properties and the ionization process of the mass spectrometer device. In this work, we investigate the extent to which these additional peaks can be used to increase the statistical strength of differential analysis.Results: We present a Bayesian approach for integrating data of multiple detected peaks that come from one compound. We demonstrate the approach through a simulated experiment and validate it on ultra performance liquid chromatography-mass spectrometry (UPLC-MS) experiments for metabolomics and lipidomics. Peaks that are likely to be associated with one compound can be clustered by the similarity of their chromatographic shape. Changes of concentration between sample groups can be inferred more accurately when multiple peaks are available.Conclusions: When the sample-size is limited, the proposed multi-peak approach improves the accuracy at inferring covariate effects. An R implementation and data are available at http://research.ics.aalto.fi/mi/software/peakANOVA/.

OriginalsprogEngelsk
Artikelnummer208
TidsskriftBMC Bioinformatics
Vol/bind15
Udgave nummer1
ISSN1471-2105
DOI
StatusUdgivet - 19 jun. 2014

ID: 61172905