Forskning
Udskriv Udskriv
Switch language
Region Hovedstaden - en del af Københavns Universitetshospital
Udgivet

Stronger findings for metabolomics through Bayesian modeling of multiple peaks and compound correlations

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  1. scVAE: variational auto-encoders for single-cell gene expression data

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  2. AA9int: SNP interaction pattern search using non-hierarchical additive model set

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  3. Modeling tissue contamination to improve molecular identification of the primary tumor site of metastases

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  4. Integrative analysis of histone ChIP-seq and transcription data using Bayesian mixture models

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  5. Multivariate multi-way analysis of multi-source data

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  1. Ceramides and phospholipids are downregulated with liraglutide treatment: results from the LiraFlame randomized controlled trial

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  2. Changes in the lipidome in type 1 diabetes following low carbohydrate diet: Post-hoc analysis of a randomized crossover trial

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  3. Gut microbiota profile and selected plasma metabolites in type 1 diabetes without and with stratification by albuminuria

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  4. Characterization of plasma lipidomics in adolescent subjects with increased risk for type 1 diabetes in the DiPiS cohort

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  5. Circulating Metabolites and Lipids Are Associated to Diabetic Retinopathy in Individuals With Type 1 Diabetes

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

Vis graf over relationer

Motivation: Data analysis for metabolomics suffers from uncertainty because of the noisy measurement technology and the small sample size of experiments. Noise and the small sample size lead to a high probability of false findings. Further, individual compounds have natural variation between samples, which in many cases renders them unreliable as biomarkers. However, the levels of similar compounds are typically highly correlated, which is a phenomenon that we model in this work. Results: We propose a hierarchical Bayesian model for inferring differences between groups of samples more accurately in metabolomic studies, where the observed compounds are collinear. We discover that the method decreases the error of weak and non-existent covariate effects, and thereby reduces false-positive findings. To achieve this, the method makes use of the mass spectral peak data by clustering similar peaks into latent compounds, and by further clustering latent compounds into groups that respond in a coherent way to the experimental covariates.We demonstrate the method with three simulated studies and validate it with a metabolomic benchmark dataset.

OriginalsprogEngelsk
TidsskriftBioinformatics
Vol/bind30
Udgave nummer17
ISSN1367-4803
DOI
StatusUdgivet - 1 sep. 2014

ID: 61172853