Forskning
Udskriv Udskriv
Switch language
Region Hovedstaden - en del af Københavns Universitetshospital
Udgivet

spliceR: an R package for classification of alternative splicing and prediction of coding potential from RNA-seq data

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

DOI

  1. WISH-R- a fast and efficient tool for construction of epistatic networks for complex traits and diseases

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  2. Estimation of allele frequency and association mapping using next-generation sequencing data

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  1. The splicing factor RBM25 controls MYC activity in acute myeloid leukemia

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  2. Genetic, Clinical, and Environmental Factors Associated With Persistent Atopic Dermatitis in Childhood

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  3. Leukemogenic nucleophosmin mutation disrupts the transcription factor hub regulating granulo-monocytic fates

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  4. Consortium-based genome-wide meta-analysis for childhood dental caries traits

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

Vis graf over relationer

BACKGROUND: RNA-seq data is currently underutilized, in part because it is difficult to predict the functional impact of alternate transcription events. Recent software improvements in full-length transcript deconvolution prompted us to develop spliceR, an R package for classification of alternative splicing and prediction of coding potential.

RESULTS: spliceR uses the full-length transcript output from RNA-seq assemblers to detect single or multiple exon skipping, alternative donor and acceptor sites, intron retention, alternative first or last exon usage, and mutually exclusive exon events. For each of these events spliceR also annotates the genomic coordinates of the differentially spliced elements, facilitating downstream sequence analysis. For each transcript isoform fraction values are calculated to identify transcript switching between conditions. Lastly, spliceR predicts the coding potential, as well as the potential nonsense mediated decay (NMD) sensitivity of each transcript.

CONCLUSIONS: spliceR is an easy-to-use tool that extends the usability of RNA-seq and assembly technologies by allowing greater depth of annotation of RNA-seq data. spliceR is implemented as an R package and is freely available from the Bioconductor repository (http://www.bioconductor.org/packages/2.13/bioc/html/spliceR.html).

OriginalsprogEngelsk
TidsskriftB M C Bioinformatics
Vol/bind15
Udgave nummer1
Sider (fra-til)81
ISSN1471-2105
DOI
StatusUdgivet - 23 mar. 2014

ID: 43824177