TY - JOUR
T1 - Sphingosine-1-phosphate (S1P) receptor type 1 signaling in macrophages reduces atherosclerosis in LDL receptor-deficient mice
AU - Potì, Francesco
AU - Scalera, Enrica
AU - Feuerborn, Renata
AU - Fischer, Josephine
AU - Arndt, Lilli
AU - Varga, Georg
AU - Pardali, Evangelia
AU - Seidl, Matthias D
AU - Fobker, Manfred
AU - Liebisch, Gerhard
AU - Hesse, Bettina
AU - Lukasz, Alexander H
AU - Rossaint, Jan
AU - Kehrel, Beate E
AU - Rosenbauer, Frank
AU - Renné, Thomas
AU - Christoffersen, Christina
AU - Simoni, Manuela
AU - Burkhardt, Ralph
AU - Nofer, Jerzy-Roch
PY - 2024/11/12
Y1 - 2024/11/12
N2 - Sphingosine 1-phosphate (S1P) is a lysosphingolipid with anti-atherogenic properties, but mechanisms underlying its effects remain unclear. We here investigated atherosclerosis development in cholesterol-rich diet-fed LDL receptor-deficient mice with high or low overexpression levels of S1P receptor type 1 (S1P1) in macrophages. S1P1-overexpressing macrophages showed increased activity of transcription factors PU.1, IRF8, and LXR and were skewed towards a M2-distinct phenotype characterized by enhanced production of IL-10, IL-1RA, and IL-5, increased ATP-binding cassette transporter A1- and G1-dependent cholesterol efflux, increased expression of MerTK and efferocytosis, and reduced apoptosis due to elevated Bcl6 and MafB. A similar macrophage phenotype was observed in mice administered S1P1-selective agonist KRP203. Mechanistically, the enhanced PU.1, IRF8, and LXR activity in S1P1-overexpressing macrophages led to down-regulation of the cAMP-dependent protein kinase A and activation of the signaling cascade encompassing protein kinases Akt and mTOR complex 1 (mTORC1) as well as the late endosomal/lysosomal adaptor MAPK and mTOR activator 1 (Lamtor-1). Atherosclerotic lesions in aortic roots and brachiocephalic arteries were profoundly or moderately reduced in mice with high and low S1P1 overexpression in macrophages, respectively. We conclude that S1P1 signaling polarizes macrophages towards an anti-atherogenic functional phenotype and countervails the development of atherosclerosis in mice.
AB - Sphingosine 1-phosphate (S1P) is a lysosphingolipid with anti-atherogenic properties, but mechanisms underlying its effects remain unclear. We here investigated atherosclerosis development in cholesterol-rich diet-fed LDL receptor-deficient mice with high or low overexpression levels of S1P receptor type 1 (S1P1) in macrophages. S1P1-overexpressing macrophages showed increased activity of transcription factors PU.1, IRF8, and LXR and were skewed towards a M2-distinct phenotype characterized by enhanced production of IL-10, IL-1RA, and IL-5, increased ATP-binding cassette transporter A1- and G1-dependent cholesterol efflux, increased expression of MerTK and efferocytosis, and reduced apoptosis due to elevated Bcl6 and MafB. A similar macrophage phenotype was observed in mice administered S1P1-selective agonist KRP203. Mechanistically, the enhanced PU.1, IRF8, and LXR activity in S1P1-overexpressing macrophages led to down-regulation of the cAMP-dependent protein kinase A and activation of the signaling cascade encompassing protein kinases Akt and mTOR complex 1 (mTORC1) as well as the late endosomal/lysosomal adaptor MAPK and mTOR activator 1 (Lamtor-1). Atherosclerotic lesions in aortic roots and brachiocephalic arteries were profoundly or moderately reduced in mice with high and low S1P1 overexpression in macrophages, respectively. We conclude that S1P1 signaling polarizes macrophages towards an anti-atherogenic functional phenotype and countervails the development of atherosclerosis in mice.
U2 - 10.1172/jci.insight.158127
DO - 10.1172/jci.insight.158127
M3 - Journal article
C2 - 39531328
SN - 2379-3708
JO - JCI Insight
JF - JCI Insight
ER -