Forskning
Udskriv Udskriv
Switch language
Region Hovedstaden - en del af Københavns Universitetshospital
Udgivet

Skeletal Muscle Microvascular Changes in Response to Short-Term Blood Flow Restricted Training-Exercise-Induced Adaptations and Signs of Perivascular Stress

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

DOI

  1. Aerobic Exercise Training in Patients With mtDNA-Related Mitochondrial Myopathy

    Publikation: Bidrag til tidsskriftReviewForskningpeer review

  2. Bisphenol A Diglycidyl Ether (BADGE) and Progesterone Do Not Induce Ca2+ Signals in Boar Sperm Cells

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  3. Cerebral vs. Cardiovascular Responses to Exercise in Type 2 Diabetic Patients

    Publikation: Bidrag til tidsskriftReviewForskningpeer review

Vis graf over relationer

Aim: Previous reports suggest that low-load muscle exercise performed under blood flow restriction (BFR) may lead to endurance adaptations. However, only few and conflicting results exist on the magnitude and timing of microvascular adaptations, overall indicating a lack of angiogenesis with BFR training. The present study, therefore, aimed to examine the effect of short-term high-frequency BFR training on human skeletal muscle vascularization. Methods: Participants completed 3 weeks of high-frequency (one to two daily sessions) training consisting of either BFR exercise [(BFRE) n = 10, 22.8 ± 2.3 years; 20% one-repetition maximum (1RM), 100 mmHg] performed to concentric failure or work-matched free-flow exercise [(CON) n = 8, 21.9 ± 3.0 years; 20% 1RM]. Muscle biopsies [vastus lateralis (VL)] were obtained at baseline, 8 days into the intervention, and 3 and 10 days after cessation of the intervention to examine capillary and perivascular adaptations, as well as angiogenesis-related protein signaling and gene expression. Results: Capillary per myofiber and capillary area (CA) increased 21-24 and 25-34%, respectively, in response to BFRE (P < 0.05-0.01), while capillary density (CD) remained unchanged. Overall, these adaptations led to a consistent elevation (15-16%) in the capillary-to-muscle area ratio following BFRE (P < 0.05-0.01). In addition, evaluation of perivascular properties indicated thickening of the perivascular basal membrane following BFRE. No or only minor changes were observed in CON. Conclusion: This study is the first to show that short-term high-frequency, low-load BFRE can lead to microvascular adaptations (i.e., capillary neoformation and changes in morphology), which may contribute to the endurance effects previously documented with BFR training. The observation of perivascular membrane thickening suggests that high-frequency BFRE may be associated with significant vascular stress.

OriginalsprogEngelsk
TidsskriftFrontiers in physiology
Vol/bind11
Sider (fra-til)556
ISSN1664-042X
DOI
StatusUdgivet - 12 jun. 2020

Bibliografisk note

Copyright © 2020 Nielsen, Frandsen, Jensen, Prokhorova, Dalgaard, Bech, Nygaard, Suetta and Aagaard.

ID: 61812360