Forskning
Udskriv Udskriv
Switch language
Region Hovedstaden - en del af Københavns Universitetshospital
Udgivet

Sensitivity analysis of magnetic field measurements for magnetic resonance electrical impedance tomography (MREIT)

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

DOI

  1. ActiveAxADD: Toward non-parametric and orientationally invariant axon diameter distribution mapping using PGSE

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  2. Quantification of cerebral perfusion and cerebrovascular reserve using Turbo-QUASAR arterial spin labeling MRI

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  3. Coil profile estimation strategies for parallel imaging with hyperpolarized 13 C MRI

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  1. Accurate and robust whole-head segmentation from magnetic resonance images for individualized head modeling

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  2. Stimulating aged brains with transcranial direct current stimulation: Opportunities and challenges

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  3. Multi-site benchmarking of clinical 13C RF coils at 3T

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  4. Guidelines for TMS/tES Clinical Services and Research through the COVID-19 Pandemic

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

Vis graf over relationer
Purpose

Clinical use of magnetic resonance electrical impedance tomography (MREIT) still requires significant sensitivity improvements. Here, the measurement of the current-induced magnetic field (ΔBz,c) is improved using systematic efficiency analyses and optimization of multi-echo spin echo (MESE) and steady-state free precession free induction decay (SSFP-FID) sequences.
Theory and Methods

Considering T1, T2, and math formula relaxation in the signal-to-noise ratios (SNRs) of the MR magnitude images, the efficiency of MESE and SSFP-FID MREIT experiments, and its dependence on the sequence parameters, are analytically analyzed and simulated. The theoretical results are experimentally validated in a saline-filled homogenous spherical phantom with relaxation parameters similar to brain tissue. Measurement of ΔBz,c is also performed in a cylindrical phantom with saline and chicken meat.
Results

The efficiency simulations and experimental results are in good agreement. When using optimal parameters, ΔBz,c can be reliably measured in the phantom even at injected current strengths of 1 mA or lower for both sequence types. The importance of using proper crusher gradient selection on the phase evolution in a MESE experiment is also demonstrated.
Conclusion

The efficiencies observed with the optimized sequence parameters will likely render in-vivo human brain MREIT feasible. Magn Reson Med, 2017. © 2017 International Society for Magnetic Resonance in Medicine.
OriginalsprogEngelsk
TidsskriftMagnetic Resonance in Medicine
Vol/bind79
Sider (fra-til)748-760
ISSN0740-3194
DOI
StatusUdgivet - feb. 2018

ID: 50574142