Abstract
Although loss of cholinergic neurons in the basal forebrain is considered a key initial feature in Alzheimer's disease (AD), changes in other transmitter systems, including serotonin and 5-HT(2A) receptors, are also associated with early AD. The aim of this study was to investigate whether elimination of the cholinergic neurons in the basal forebrain directly affects 5-HT(2A) receptor levels. For this purpose intraventricular injection of the selective immunotoxin 192 IgG-Saporin was given to rats in doses of either 2.5 or 5 microg. The rats were sacrificed after 1, 2, 4 and 20 weeks. 5-HT(2A) protein levels were determined by western techniques in frontal cortex and hippocampus. A significant 70% downregulation in frontal cortex and a 100% upregulation in hippocampus of 5-HT(2A) receptor levels were observed 20 weeks after the cholinergic lesion when using the highest dose of 192 IgG-Saporin. Our results show that cholinergic deafferentation leads to decreased frontal cortex and increased hippocampal 5-HT(2A) receptor levels. This is probably a consequence of the interaction between the serotonergic and the cholinergic system that may vary depending on the brain region.
Originalsprog | Engelsk |
---|---|
Tidsskrift | Neuroscience Letters |
Vol/bind | 428 |
Udgave nummer | 1 |
Sider (fra-til) | 47-51 |
Antal sider | 5 |
ISSN | 0304-3940 |
DOI | |
Status | Udgivet - 20 nov. 2007 |