Forskning
Udskriv Udskriv
Switch language
Region Hovedstaden - en del af Københavns Universitetshospital
Udgivet

scVAE: variational auto-encoders for single-cell gene expression data

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  1. AA9int: SNP interaction pattern search using non-hierarchical additive model set

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  2. Stronger findings for metabolomics through Bayesian modeling of multiple peaks and compound correlations

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  3. Modeling tissue contamination to improve molecular identification of the primary tumor site of metastases

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  4. Integrative analysis of histone ChIP-seq and transcription data using Bayesian mixture models

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  5. Multivariate multi-way analysis of multi-source data

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  1. Reducing the rate of psychiatric Re-ADMISsions in Bipolar Disorder using smartphones The RADMIS trial

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  2. Daily estimates of clinical severity of symptoms in bipolar disorder from smartphone-based self-assessments

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  3. Forecasting Mood in Bipolar Disorder From Smartphone Self-assessments: Hierarchical Bayesian Approach

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

Vis graf over relationer

MOTIVATION: Models for analysing and making relevant biological inferences from massive amounts of complex single-cell transcriptomic data typically require several individual data-processing steps, each with their own set of hyperparameter choices. With deep generative models one can work directly with count data, make likelihood-based model comparison, learn a latent representation of the cells and capture more of the variability in different cell populations.

RESULTS: We propose a novel method based on variational auto-encoders (VAEs) for analysis of single-cell RNA sequencing (scRNA-seq) data. It avoids data preprocessing by using raw count data as input and can robustly estimate the expected gene expression levels and a latent representation for each cell. We tested several count likelihood functions and a variant of the VAE that has a priori clustering in the latent space. We show for several scRNA-seq datasets that our method outperforms recently proposed scRNA-seq methods in clustering cells and that the resulting clusters reflect cell types.

AVAILABILITY AND IMPLEMENTATION: Our method, called scVAE, is implemented in Python using the TensorFlow machine-learning library, and it is freely available at https://github.com/scvae/scvae.

SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.

OriginalsprogEngelsk
TidsskriftBioinformatics
Vol/bind36
Udgave nummer16
Sider (fra-til)4415-4422
Antal sider8
ISSN1367-4803
DOI
StatusUdgivet - 15 aug. 2020

Bibliografisk note

© The Author(s) 2020. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

ID: 62086991