Forskning
Udskriv Udskriv
Switch language
Region Hovedstaden - en del af Københavns Universitetshospital
Udgivet

Remodeling of motor units after nerve regeneration studied by quantitative electromyography

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  1. Automatic continuous EEG signal analysis for diagnosis of delirium in patients with sepsis

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  2. Myelin protein zero gene dose dependent axonal ion-channel dysfunction in a family with Charcot-Marie-Tooth disease

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  3. Automatic detection of cortical arousals in sleep and their contribution to daytime sleepiness

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  1. Intravenous arylsulfatase A in metachromatic leukodystrophy: a phase 1/2 study

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  2. Myelin protein zero gene dose dependent axonal ion-channel dysfunction in a family with Charcot-Marie-Tooth disease

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  3. Ulnar Head or Total Distal Radioulnar Joint Replacement, Isolated and Combined with Total Wrist Arthroplasty: Midterm Results

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  4. Quantitative electromyography: Normative data in paraspinal muscles

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

Vis graf over relationer

OBJECTIVE: Peripheral nerve has the capacity to regenerate after nerve lesions; during reinnervation of muscle motor units are gradually reestablished. The aim of this study was to follow the time course of reestablishing and remodeling of motor units in relation to recovery of force after different types of nerve repair.

METHODS: Reinnervation of muscle was compared clinically and electrophysiologically in complete median or ulnar nerve lesions with short gap lengths in the distal forearm repaired with a collagen nerve conduit (11 nerves) or nerve suture (10 nerves). Reestablishment of motor units was studied by quantitative EMG and recording of evoked compound muscle action potential (CMAP) during a 24-month observation period after nerve repair.

RESULTS: Force recovered partially to about 80% of normal. Denervation activity gradually decreased during reinnervation though it was still increased at 24 months. Nascent motor unit potentials (MUPs) at early reinnervation were prolonged and polyphasic. During longitudinal studies, MUPs remained prolonged and their amplitudes gradually increased markedly. Firing of MUPs was unstable throughout the study. CMAPs gradually increased and the number of motor units recovered to approximately 20% of normal. There was weak evidence of CMAP amplitude recovery after suture ahead of conduit repair but without treatment related differences at 2 years.

CONCLUSIONS: Surgical repair of nerve lesions with a nerve conduit or suture supported recovery of force and of motor unit reinnervation to the same extent. Changes occurred at a higher rate during early regeneration and slower after 12 months but should be followed for at least 2 years to assess outcome. EMG changes reflected extensive remodeling of motor units from early nascent units to a mature state with greatly enlarged units due to axonal regeneration and collateral sprouting and maturation of regenerated nerve and reinnervated muscle fibers after both types of repair.

SIGNIFICANCE: Remodeling of motor units after peripheral nerve lesions provides the basis for better recovery of force than the number of motor axons and units. There were no differences after repair with a collagen nerve conduit and nerve suture at short nerve gap lengths. The reduced number of motor units indicates that further improvement of repair procedures and nerve environment is needed.

OriginalsprogEngelsk
TidsskriftClinical neurophysiology : official journal of the International Federation of Clinical Neurophysiology
Vol/bind127
Udgave nummer2
Sider (fra-til)1675-82
Antal sider8
ISSN1388-2457
DOI
StatusUdgivet - feb. 2016

ID: 49775155