Forskning
Udskriv Udskriv
Switch language
Region Hovedstaden - en del af Københavns Universitetshospital
Udgivet

Regional Longitudinal Myocardial Deformation Provides Incremental Prognostic Information in Patients with ST-Segment Elevation Myocardial Infarction

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  1. Cytomegalovirus-specific CD8+ T-cell responses are associated with arterial blood pressure in people living with HIV

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  2. Making the best of the worst: Care quality during emergency cesarean sections

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  3. Seasonality of ventricular fibrillation at first myocardial infarction and association with viral exposure

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  1. Level of Physical Activity, Left Ventricular Mass, Hypertension, and Prognosis

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  2. Cardiovascular and metabolic health effects of team handball training in overweight women: Impact of prior experience

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  3. Catheter ablation for atrial fibrillation is associated with lower incidence of heart failure and death

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

Vis graf over relationer

BACKGROUND: Global longitudinal systolic strain (GLS) has recently been demonstrated to be a superior prognosticator to conventional echocardiographic measures in patients after myocardial infarction (MI). The aim of this study was to evaluate the prognostic value of regional longitudinal myocardial deformation in comparison to GLS, conventional echocardiography and clinical information.

METHOD: In total 391 patients were admitted with ST-Segment elevation myocardial infarction (STEMI), treated with primary percutaneous coronary intervention and subsequently examined by echocardiography. All patients were examined by tissue Doppler imaging (TDI) and two-dimensional strain echocardiography (2DSE).

RESULTS: During a median-follow-up of 5.3 (IQR 2.5-6.1) years the primary endpoint (death, heart failure or a new MI) was reached by 145 (38.9%) patients. After adjustment for significant confounders (including conventional echocardiographic parameters) and culprit lesion, reduced longitudinal performance in the anterior septal and inferior myocardial regions (but not GLS) remained independent predictors of the combined outcome. Furthermore, inferior myocardial longitudinal deformation provided incremental prognostic information to clinical and conventional echocardiographic information (Harrell's c-statistics: 0.63 vs. 0.67, p = 0.032). In addition, impaired longitudinal deformation outside the culprit lesion perfusion region was significantly associated with an adverse outcome (p<0.05 for all deformation parameters).

CONCLUSION: Regional longitudinal myocardial deformation measures, regardless if determined by TDI or 2DSE, are superior prognosticators to GLS. In addition, impaired longitudinal deformation in the inferior myocardial segment provides prognostic information over and above clinical and conventional echocardiographic risk factors. Furthermore, impaired longitudinal deformation outside the culprit lesion perfusion region seems to be a paramount marker of adverse outcome.

OriginalsprogEngelsk
TidsskriftP L o S One
Vol/bind11
Udgave nummer6
Sider (fra-til)e0158280
ISSN1932-6203
DOI
StatusUdgivet - 27 jun. 2016

ID: 48305049