RadAdapt: Radiology Report Summarization via Lightweight Domain Adaptation of Large Language Models

Dave Van Veen, Cara Van Uden, Maayane Attias, Anuj Pareek, Christian Bluethgen, Malgorzata Polacin, Wah Chiu, Jean Benoit Delbrouck, Juan Manuel Zambrano Chaves, Curtis P. Langlotz, Akshay S. Chaudhari, John Pauly

17 Citationer (Scopus)

Abstract

We systematically investigate lightweight strategies to adapt large language models (LLMs) for the task of radiology report summarization (RRS). Specifically, we focus on domain adaptation via pretraining (on natural language, biomedical text, or clinical text) and via discrete prompting or parameter-efficient fine-tuning. Our results consistently achieve best performance by maximally adapting to the task via pretraining on clinical text and fine-tuning on RRS examples. Importantly, this method fine-tunes a mere 0.32% of parameters throughout the model, in contrast to end-to-end fine-tuning (100% of parameters). Additionally, we study the effect of in-context examples and out-of-distribution (OOD) training before concluding with a radiologist reader study and qualitative analysis. Our findings highlight the importance of domain adaptation in RRS and provide valuable insights toward developing effective natural language processing solutions for clinical tasks.

OriginalsprogEngelsk
TidsskriftProceedings of the Annual Meeting of the Association for Computational Linguistics
Sider (fra-til)449-460
Antal sider12
ISSN0736-587X
StatusUdgivet - 2023
Udgivet eksterntJa
Begivenhed22nd Workshop on Biomedical Natural Language Processing and BioNLP Shared Tasks, BioNLP 2023 - Toronto, Canada
Varighed: 13 jul. 2023 → …

Konference

Konference22nd Workshop on Biomedical Natural Language Processing and BioNLP Shared Tasks, BioNLP 2023
Land/OmrådeCanada
ByToronto
Periode13/07/2023 → …

Fingeraftryk

Dyk ned i forskningsemnerne om 'RadAdapt: Radiology Report Summarization via Lightweight Domain Adaptation of Large Language Models'. Sammen danner de et unikt fingeraftryk.

Citationsformater