Forskning
Udskriv Udskriv
Switch language
Region Hovedstaden - en del af Københavns Universitetshospital
Udgivet

Quantitative relationships in delphinid neocortex

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

DOI

  1. Editorial: Neurostereology

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  2. Central melanopsin projections in the diurnal rodent, Arvicanthis niloticus

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  3. Prevalence of increases in functional connectivity in visual, somatosensory and language areas in congenital blindness

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  1. Author Correction: Assessment of brain reference genes for RT-qPCR studies in neurodegenerative diseases

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  2. Epigenetic modulation of AREL1 and increased HLA expression in brains of multiple system atrophy patients

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  3. Distinct Autoimmune Anti-α-Synuclein Antibody Patterns in Multiple System Atrophy and Parkinson’s Disease

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  4. Authors' response: Association between IBD and Parkinson's disease: seek and you shall find?

    Publikation: Bidrag til tidsskriftKommentar/debatForskning

  5. Misfolded SOD1 inclusions in patients with mutations in C9orf72 and other ALS/FTD-associated genes

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

Vis graf over relationer

Possessing large brains and complex behavioral patterns, cetaceans are believed to be highly intelligent. Their brains, which are the largest in the Animal Kingdom and have enormous gyrification compared with terrestrial mammals, have long been of scientific interest. Few studies, however, report total number of brain cells in cetaceans, and even fewer have used unbiased counting methods. In this study, using stereological methods, we estimated the total number of cells in the neocortex of the long-finned pilot whale (Globicephala melas) brain. For the first time, we show that a species of dolphin has more neocortical neurons than any mammal studied to date including humans. These cell numbers are compared across various mammals with different brain sizes, and the function of possessing many neurons is discussed. We found that the long-finned pilot whale neocortex has approximately 37.2 × 10(9) neurons, which is almost twice as many as humans, and 127 × 10(9) glial cells. Thus, the absolute number of neurons in the human neocortex is not correlated with the superior cognitive abilities of humans (at least compared to cetaceans) as has previously been hypothesized. However, as neuron density in long-finned pilot whales is lower than that in humans, their higher cell number appears to be due to their larger brain. Accordingly, our findings make an important contribution to the ongoing debate over quantitative relationships in the mammalian brain.

OriginalsprogEngelsk
TidsskriftFrontiers in Neuroanatomy
Vol/bind8
Sider (fra-til)132
ISSN1662-5129
DOI
StatusUdgivet - 2014

ID: 44984218