Forskning
Udskriv Udskriv
Switch language
Region Hovedstaden - en del af Københavns Universitetshospital
Udgivet

Quantitative proteomics of human heart samples collected in vivo reveal the remodeled protein landscape of dilated left atrium without atrial fibrillation

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

DOI

  1. Identification of Tumor Antigens Among the HLA Peptidomes of Glioblastoma Tumors and Plasma

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  2. Proteomic analysis of Phytophthora infestans reveals the importance of cell wall proteins in pathogenicity

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  3. Proteome-wide analysis of lysine acetylation suggests its broad regulatory scope in Saccharomyces cerevisiae

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  4. Characterization of membrane-shed microvesicles from cytokine-stimulated β-cells using proteomics strategies

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  1. Explaining deep neural networks for knowledge discovery in electrocardiogram analysis

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  2. Electrocardiographic T-wave morphology and risk of mortality

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  3. Atrial fibrillation is a marker of increased mortality risk in non-ischemic heart failure - results from the DANISH Trial

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  4. Reply to: TFC ECG in arrhythmogenic cardiomyopathy: Inadequate mixture of criteria?

    Publikation: Bidrag til tidsskriftKommentar/debatForskningpeer review

Vis graf over relationer

Genetic and genomic research has greatly advanced our understanding of heart disease. Yet, comprehensive, in-depth, quantitative maps of protein expression in hearts of living humans are still lacking. Using samples obtained during valve replacement surgery in patients with mitral valve prolapse (MVP), we set out to define inter-chamber differences, the intersect of proteomic data with genetic or genomic datasets, and the impact of left atrial dilation on the proteome of patients with no history of atrial fibrillation (AF). We collected biopsies from right atria (RA), left atria (LA) and left ventricle (LV) of seven male patients with mitral valve regurgitation with dilated LA but no history of AF. Biopsy samples were analyzed by high-resolution mass spectrometry (MS), where peptides were pre-fractionated by reverse phase high-pressure liquid chromatography prior to MS measurement on a Q-Exactive-HF Orbitrap instrument. We identified 7,314 proteins based on 130,728 peptides. Results were confirmed in an independent set of biopsies collected from three additional individuals. Comparative analysis against data from post-mortem samples showed enhanced quantitative power and confidence level in samples collected from living hearts. Our analysis, combined with data from genome wide association studies suggested candidate gene associations to MVP, identified higher abundance in ventricle for proteins associated with cardiomyopathies and revealed the dilated LA proteome, demonstrating differential representation of molecules previously associated with AF, in non-AF hearts. This is the largest dataset of cardiac protein expression from human samples collected in vivo. It provides a comprehensive resource that allows insight into molecular fingerprints of MVP and facilitates novel inferences between genomic data and disease mechanisms. We propose that over-representation of proteins in ventricle is consequent not to redundancy but to functional need, and conclude that changes in abundance of proteins known to associate with AF are not sufficient for arrhythmogenesis.

OriginalsprogEngelsk
TidsskriftMolecular and Cellular Proteomics
Vol/bind19
Udgave nummer7
Sider (fra-til)1132-1144
Antal sider13
ISSN1535-9476
DOI
StatusUdgivet - 1 jul. 2020

ID: 60074956