Forskning
Udskriv Udskriv
Switch language
Region Hovedstaden - en del af Københavns Universitetshospital
Udgivet

Pseudomonas aeruginosa transcriptome during human infection

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

DOI

  1. Galnt11 regulates kidney function by glycosylating the endocytosis receptor megalin to modulate ligand binding

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  2. N-acyl taurines are endogenous lipid messengers that improve glucose homeostasis

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  3. Mode of action of quinoline antimalarial drugs in red blood cells infected by Plasmodium falciparum revealed in vivo

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  4. Structure of Pseudomonas aeruginosa ribosomes from an aminoglycoside-resistant clinical isolate

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  5. Hypervariable region 1 and N-linked glycans of hepatitis C regulate virion neutralization by modulating envelope conformations

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  1. The effect of needle tenotomy on hammer, mallet and claw toe deformities in patients with diabetes, a retrospective study

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  2. Is pseudarthrosis after spinal instrumentation caused by a chronic infection?

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  3. Incidence and predictors of recurrent and other new diabetic foot ulcers: a retrospective cohort study

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  4. An Equine Wound Model to Study Effects of Bacterial Aggregates on Wound Healing

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

Vis graf over relationer

Laboratory experiments have uncovered many basic aspects of bacterial physiology and behavior. After the past century of mostly in vitro experiments, we now have detailed knowledge of bacterial behavior in standard laboratory conditions, but only a superficial understanding of bacterial functions and behaviors during human infection. It is well-known that the growth and behavior of bacteria are largely dictated by their environment, but how bacterial physiology differs in laboratory models compared with human infections is not known. To address this question, we compared the transcriptome of Pseudomonas aeruginosa during human infection to that of P. aeruginosa in a variety of laboratory conditions. Several pathways, including the bacterium's primary quorum sensing system, had significantly lower expression in human infections than in many laboratory conditions. On the other hand, multiple genes known to confer antibiotic resistance had substantially higher expression in human infection than in laboratory conditions, potentially explaining why antibiotic resistance assays in the clinical laboratory frequently underestimate resistance in patients. Using a standard machine learning technique known as support vector machines, we identified a set of genes whose expression reliably distinguished in vitro conditions from human infections. Finally, we used these support vector machines with binary classification to force P. aeruginosa mouse infection transcriptomes to be classified as human or in vitro. Determining what differentiates our current models from clinical infections is important to better understand bacterial infections and will be necessary to create model systems that more accurately capture the biology of infection.

OriginalsprogEngelsk
TidsskriftProceedings of the National Academy of Sciences of the United States of America
Vol/bind115
Udgave nummer22
Sider (fra-til)E5125-E5134
ISSN0027-8424
DOI
StatusUdgivet - 29 maj 2018

ID: 56255849