Forskning
Udskriv Udskriv
Switch language
Region Hovedstaden - en del af Københavns Universitetshospital
Udgivet

Preserved capacity for satellite cell proliferation, regeneration, and hypertrophy in the skeletal muscle of healthy elderly men

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  1. Thyroid hormone receptor α in skeletal muscle is essential for T3-mediated increase in energy expenditure

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  2. Influence of FGF23 and Klotho on male reproduction: Systemic vs direct effects

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  3. Early development of tendinopathy in humans: Sequence of pathological changes in structure and tissue turnover signaling

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  1. Distribution of concurrent training sessions does not impact endurance adaptation

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  2. UTE T2* mapping of tendinopathic patellar tendons: an MRI reproducibility study

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  3. Age-related myofiber atrophy in old mice is reversed by ten weeks voluntary high-resistance wheel running

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  4. Insulin-stimulated glucose uptake partly relies on p21-activated kinase (PAK)2, but not PAK1, in mouse skeletal muscle

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

Vis graf over relationer
Blunted muscle hypertrophy and impaired regeneration with aging have been partly attributed to satellite cell (SC) dysfunction. However, true muscle regeneration has not yet been studied in elderly individuals. To investigate this, muscle injury was induced by 200 electrically stimulated (ES) eccentric contractions of the vastus lateralis (VL) of one leg in seven young (20-31 years) and 19 elderly men (60-73 years). This was followed by 13 weeks of resistance training (RT) for both legs to investigate the capacity for hypertrophy. Muscle biopsies were collected Pre- and Post-RT, and 9 days after ES, for immunohistochemistry and RT-PCR. Hypertrophy was assessed by MRI, DEXA, and immunohistochemistry. Overall, surprisingly comparable responses were observed between the young and elderly. Nine days after ES, Pax7+ SC number had doubled (P < .05), alongside necrosis and substantial changes in expression of genes related to matrix, myogenesis, and innervation (P < .05). Post-RT, VL cross-sectional area had increased in both legs (~15%, P < .05) and SCs/type II fiber had increased ~2-4 times more with ES+RT vs RT alone (P < .001). Together these novel findings demonstrate "youthful" regeneration and hypertrophy responses in human elderly muscle. Furthermore, boosting SC availability in healthy elderly men does not enhance the subsequent muscle hypertrophy response to RT. Keywords: Sarcopenia; heavy resistance training; human; in vivo myogenesis; myofiber necrosis; myogenic progenitor cells.
OriginalsprogEngelsk
TidsskriftFASEB Journal
ISSN0892-6638
StatusUdgivet - maj 2020

ID: 61757572