TY - JOUR
T1 - Prediction of cardiovascular markers and diseases using retinal fundus images and deep learning: a systematic scoping review
AU - Li, Livie Yumeng
AU - Isaksen, Anders Aasted
AU - Lebiecka-Johansen, Benjamin
AU - Funck, Kristian
AU - Thambawita, Vajira
AU - Byberg, Stine
AU - Andersen, Tue Helms
AU - Norgaard, Ole
AU - Hulman, Adam
PY - 2024/11/1
Y1 - 2024/11/1
N2 - Rapid development in deep learning for image analysis inspired studies to focus on predicting cardiovascular risk using retinal fundus images. This scoping review aimed to identify and describe studies using retinal fundus images and deep learning to predict cardiovascular risk markers and diseases. We searched MEDLINE and Embase on 17 November 2023. Abstracts and relevant full-text articles were independently screened by two reviewers. We included studies that used deep learning for the analysis of retinal fundus images to predict cardiovascular risk markers or cardiovascular diseases (CVDs) and excluded studies only using predefined characteristics of retinal fundus images. Study characteristics were presented using descriptive statistics. We included 24 articles published between 2018 and 2023. Among these, 23 (96%) were cross-sectional studies and eight (33%) were follow-up studies with clinical CVD outcomes. Seven studies included a combination of both designs. Most studies (96%) used convolutional neural networks to process images. We found nine (38%) studies that incorporated clinical risk factors in the prediction and four (17%) that compared the results to commonly used clinical risk scores in a prospective setting. Three of these reported improved discriminative performance. External validation of models was rare (21%). There is increasing interest in using retinal fundus images in cardiovascular risk assessment with some studies demonstrating some improvements in prediction. However, more prospective studies, comparisons of results to clinical risk scores, and models augmented with traditional risk factors can strengthen further research in the field.
AB - Rapid development in deep learning for image analysis inspired studies to focus on predicting cardiovascular risk using retinal fundus images. This scoping review aimed to identify and describe studies using retinal fundus images and deep learning to predict cardiovascular risk markers and diseases. We searched MEDLINE and Embase on 17 November 2023. Abstracts and relevant full-text articles were independently screened by two reviewers. We included studies that used deep learning for the analysis of retinal fundus images to predict cardiovascular risk markers or cardiovascular diseases (CVDs) and excluded studies only using predefined characteristics of retinal fundus images. Study characteristics were presented using descriptive statistics. We included 24 articles published between 2018 and 2023. Among these, 23 (96%) were cross-sectional studies and eight (33%) were follow-up studies with clinical CVD outcomes. Seven studies included a combination of both designs. Most studies (96%) used convolutional neural networks to process images. We found nine (38%) studies that incorporated clinical risk factors in the prediction and four (17%) that compared the results to commonly used clinical risk scores in a prospective setting. Three of these reported improved discriminative performance. External validation of models was rare (21%). There is increasing interest in using retinal fundus images in cardiovascular risk assessment with some studies demonstrating some improvements in prediction. However, more prospective studies, comparisons of results to clinical risk scores, and models augmented with traditional risk factors can strengthen further research in the field.
U2 - 10.1093/ehjdh/ztae068
DO - 10.1093/ehjdh/ztae068
M3 - Journal article
C2 - 39563905
VL - 5
SP - 660
EP - 669
JO - EUROPEAN HEART JOURNAL - DIGITAL HEALTH
JF - EUROPEAN HEART JOURNAL - DIGITAL HEALTH
IS - 6
ER -