Forskning
Udskriv Udskriv
Switch language
Region Hovedstaden - en del af Københavns Universitetshospital
Udgivet

Predicting the fMRI Signal Fluctuation with Recurrent Neural Networks Trained on Vascular Network Dynamics

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

DOI

  1. Human Cerebral Perfusion, Oxygen Consumption, and Lactate Production in Response to Hypoxic Exposure

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  2. Education and Income Show Heterogeneous Relationships to Lifespan Brain and Cognitive Differences Across European and US Cohorts

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  3. Multimodal Image Analysis of Apparent Brain Age Identifies Physical Fitness as Predictor of Brain Maintenance

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  4. Is There a Correlation Between the Number of Brain Cells and IQ?

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  5. Dissociable and Paradoxical Roles of Rat Medial and Lateral Orbitofrontal Cortex in Visual Serial Reversal Learning

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  1. In vivo tensor-valued diffusion MRI of focal demyelination in white and deep grey matter of rodents

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  2. High spatiotemporal vessel-specific hemodynamic mapping with multi-echo single-vessel fMRI

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  3. Streamline tractography for 3D mapping of axon bundle organization in one MRI voxel using ultra-high resolution synchrotron radiation imaging

    Publikation: Bidrag til bog/antologi/rapportKonferenceabstrakt i proceedingsForskningpeer review

  4. Multidimensional Diffusion MRI Assists Myelin-sensitive Bound Pool Fraction in Differentiating Microstructural Maturity of Primate Brains

    Publikation: Bidrag til bog/antologi/rapportKonferenceabstrakt i proceedingsForskningpeer review

  • Filip Sobczak
  • Yi He
  • Terrence J Sejnowski
  • Xin Yu
Vis graf over relationer

Resting-state functional MRI (rs-fMRI) studies have revealed specific low-frequency hemodynamic signal fluctuations (<0.1 Hz) in the brain, which could be related to neuronal oscillations through the neurovascular coupling mechanism. Given the vascular origin of the fMRI signal, it remains challenging to separate the neural correlates of global rs-fMRI signal fluctuations from other confounding sources. However, the slow-oscillation detected from individual vessels by single-vessel fMRI presents strong correlation to neural oscillations. Here, we use recurrent neural networks (RNNs) to predict the future temporal evolution of the rs-fMRI slow oscillation from both rodent and human brains. The RNNs trained with vessel-specific rs-fMRI signals encode the unique brain oscillatory dynamic feature, presenting more effective prediction than the conventional autoregressive model. This RNN-based predictive modeling of rs-fMRI datasets from the Human Connectome Project (HCP) reveals brain state-specific characteristics, demonstrating an inverse relationship between the global rs-fMRI signal fluctuation with the internal default-mode network (DMN) correlation. The RNN prediction method presents a unique data-driven encoding scheme to specify potential brain state differences based on the global fMRI signal fluctuation, but not solely dependent on the global variance.

OriginalsprogEngelsk
TidsskriftCerebral Cortex
Vol/bind31
Udgave nummer2
Sider (fra-til)826-844
Antal sider19
ISSN1047-3211
DOI
StatusUdgivet - 1 feb. 2021

Bibliografisk note

© The Author(s) 2020. Published by Oxford University Press.

ID: 60880916