Udskriv Udskriv
Switch language
Region Hovedstaden - en del af Københavns Universitetshospital

Precision diagnostic approach to predict 5-year risk for microvascular complications in type 1 diabetes

Publikation: Bidrag til tidsskriftTidsskriftartikelpeer review


  1. IBD metabonomics predicts phenotype, disease course, and treatment response

    Publikation: Bidrag til tidsskriftReviewpeer review

  2. On the investigation of non-specific effects of BCG: Interpreting global vaccine data

    Publikation: Bidrag til tidsskriftTidsskriftartikelpeer review

Vis graf over relationer

BACKGROUND: Individuals with long standing diabetes duration can experience damage to small microvascular blood vessels leading to diabetes complications (DCs) and increased mortality. Precision diagnostic tailors a diagnosis to an individual by using biomedical information. Blood small molecule profiling coupled with machine learning (ML) can facilitate the goals of precision diagnostics, including earlier diagnosis and individualized risk scoring.

METHODS: Using data in a cohort of 537 adults with type 1 diabetes (T1D) we predicted five-year progression to DCs. Prediction models were computed first with clinical risk factors at baseline and then with clinical risk factors and blood-derived molecular data at baseline. Progression of diabetic kidney disease and diabetic retinopathy were predicted in two complication-specific models.

FINDINGS: The model predicts the progression to diabetic kidney disease with accuracy: 0.96 ± 0.25 and 0.96 ± 0.06 area under curve, AUC, with clinical measurements and with small molecule predictors respectively and highlighted main predictors to be albuminuria, glomerular filtration rate, retinopathy status at baseline, sugar derivatives and ketones. For diabetic retinopathy, AUC 0.75 ± 0.14 and 0.79 ± 0.16 with clinical measurements and with small molecule predictors respectively and highlighted key predictors, albuminuria, glomerular filtration rate and retinopathy status at baseline. Individual risk scores were built to visualize results.

INTERPRETATION: With further validation ML tools could facilitate the implementation of precision diagnosis in the clinic. It is envisaged that patients could be screened for complications, before these occur, thus preserving healthy life-years for persons with diabetes.

FUNDING: This study has been financially supported by Novo Nordisk Foundation grant NNF14OC0013659.

Sider (fra-til)104032
StatusUdgivet - jun. 2022

Bibliografisk note

Copyright © 2022 The Authors. Published by Elsevier B.V. All rights reserved.

ID: 79780903