Forskning
Udskriv Udskriv
Switch language
Region Hovedstaden - en del af Københavns Universitetshospital
Udgivet

Plasmodium falciparum-Infected Erythrocyte Knob Density Is Linked to the PfEMP1 Variant Expressed

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

DOI

  1. Meta-analysis of Plasmodium falciparum var Signatures Contributing to Severe Malaria in African Children and Indian Adults

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  2. Convergent Metabolic Specialization through Distinct Evolutionary Paths in Pseudomonas aeruginosa

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  3. The Pseudomonas aeruginosa PSL Polysaccharide Is a Social but Noncheatable Trait in Biofilms

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  1. Reliable cell and tissue morphology-based diagnosis of endemic Burkitt lymphoma in resource-constrained settings in Ghana

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  2. Looking for Needles in the Plasmodial Haystack

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

Vis graf over relationer

UNLABELLED: Members of the clonally variant Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) family mediate adhesion of infected erythrocytes (IEs) to vascular receptors. PfEMP1 expression is normally confined to nanoscale knob protrusions on the IE surface membrane. To investigate the relationship between the densities of these IE surface knobs and the PfEMP1 variant expressed, we used specific antibody panning to generate three sublines of the P. falciparum clone IT4, which expresses the PfEMP1 variants IT4VAR04, IT4VAR32b, and IT4VAR60. The knob density in each subline was then determined by atomic force microscopy (AFM) and scanning electron microscopy (SEM) and compared to PfEMP1 and knob-associated histidine-rich protein (KAHRP) expression. Selection for uniform expression of IT4VAR04 produced little change in knob density, compared to unselected IEs. In contrast, selection for IT4VAR32b expression increased knob density approximately 3-fold, whereas IEs selected for IT4VAR60 expression were essentially knobless. When IT4VAR60(+) IEs were subsequently selected to express IT4VAR04 or IT4VAR32b, they again displayed low and high knob densities, respectively. All sublines expressed KAHRP regardless of the PfEMP1 expressed. Our study documents for the first time that knob density is related to the PfEMP1 variant expressed. This may reflect topological requirements to ensure optimal adhesive properties of the IEs.

IMPORTANCE: Infections with Plasmodium falciparum malaria parasites are still responsible for many deaths, especially among children and pregnant women. New interventions are needed to reduce severe illness and deaths caused by this malaria parasite. Thus, a better understanding of the mechanisms behind the pathogenesis is essential. A main reason why Plasmodium falciparum malaria is more severe than disease caused by other malaria species is its ability to express variant antigens on the infected erythrocyte surface. These antigens are presented on membrane protrusions known as knobs. This study set out to investigate the interplay between different variant antigens on the surface of P. falciparum-infected erythrocytes and the density of the knobs on which the antigens are expressed. Such a direct analysis of this relationship has not been reported before but adds to the important understanding of the complexity of malaria antigen presentation.

OriginalsprogEngelsk
TidsskriftmBio
Vol/bind6
Udgave nummer5
Sider (fra-til)e01456-15
ISSN2161-2129
DOI
StatusUdgivet - 2015

ID: 45787325