Forskning
Udskriv Udskriv
Switch language
Region Hovedstaden - en del af Københavns Universitetshospital
Udgivet

Plasma trimethylamine N-oxide and its metabolic precursors and risk of mortality, cardiovascular and renal disease in individuals with type 2-diabetes and albuminuria

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  1. Antigenic and immunogenic evaluation of permutations of soluble hepatitis C virus envelope protein E2 and E1 antigens

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  2. Dancing with atrial fibrillation - How arrhythmia affects everyday life of family members: A qualitative study

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  3. Endothelial glycocalyx and cardio-renal risk factors in type 1 diabetes

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  4. Insulin resistance genetic risk score and burden of coronary artery disease in patients referred for coronary angiography

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  1. Cardiovascular autonomic neuropathy and the impact on progression of diabetic kidney disease in type 1 diabetes

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  2. Effect of liraglutide on expression of inflammatory genes in type 2 diabetes

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  3. Ceramides and phospholipids are downregulated with liraglutide treatment: results from the LiraFlame randomized controlled trial

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

Vis graf over relationer

AIMS: The trimethylamine N-oxide (TMAO) pathway is related to intestinal microbiota and has been associated to risk of cardiovascular disease (CVD). We investigated associations between four plasma metabolites in the TMAO pathway and risk of all-cause mortality, CVD and deterioration in renal function in individuals with type 2-diabetes (T2D) and albuminuria.

MATERIALS AND METHODS: Plasma concentrations of TMAO, choline, carnitine, and betaine were measured by liquid chromatography-tandem mass spectrometry at baseline in 311 individuals with T2D and albuminuria. Information on all-cause mortality and fatal/non-fatal CVD during follow-up was obtained from registries. The association of each metabolite, and a weighted sum score of all four metabolites, with the endpoints were examined. Serum creatinine was measured at follow-up visits and the renal endpoint was defined as eGFR-decline of ≥30%. Associations were analysed using proportional hazards models adjusted for traditional risk factors.

RESULTS: Baseline mean(SD) age was 57.2(8.2) years and 75% were males. Follow-up was up to 21.9 years (median (IQR) follow-up 6.8 (6.1-15.5) years for mortality and 6.5 (5.5-8.1) years for CVD events). The individual metabolites and the weighted sum score were not associated with all-cause mortality (n = 106) or CVD (n = 116) (adjusted p≥0.09). Higher choline, carnitine and the weighted sum score of the four metabolites were associated with higher risk of decline in eGFR (n = 106) (adjusted p = 0.001, p = 0.03 and p<0.001, respectively).

CONCLUSIONS: In individuals with T2D and albuminuria, higher choline, carnitine and a weighted sum of four metabolites from the TMAO pathway were risk markers for deterioration in renal function during long-term follow-up. Metabolites from the TMAO pathway were not independently related to risk of all-cause mortality or CVD.

OriginalsprogEngelsk
Artikelnummere0244402
TidsskriftPLoS One
Vol/bind16
Udgave nummer3
Sider (fra-til)e0244402
ISSN1932-6203
DOI
StatusUdgivet - mar. 2021

ID: 64863347