Forskning
Udskriv Udskriv
Switch language
Region Hovedstaden - en del af Københavns Universitetshospital
Udgivet

Perfusion quantification using Gaussian process deconvolution.

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  1. Quantification of cerebral perfusion and cerebrovascular reserve using Turbo-QUASAR arterial spin labeling MRI

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  2. Coil profile estimation strategies for parallel imaging with hyperpolarized 13 C MRI

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  3. Gamma-aminobutyric acid edited echo-planar spectroscopic imaging (EPSI) with MEGA-sLASER at 7T

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  4. Comparison of prospective head motion correction with NMR field probes and an optical tracking system

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  5. Improved calculation of the equilibrium magnetization of arterial blood in arterial spin labeling

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  1. Coil profile estimation strategies for parallel imaging with hyperpolarized 13 C MRI

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  2. Inductive measurement and encoding of k-space trajectories in MR raw data

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  3. Invited talk: MR safety: Regulatory aspects

    Publikation: KonferencebidragKonferenceabstrakt til konferenceForskningpeer review

  4. Invited talk: Low-frequency MR Current Density Imaging (MRCDI) in the human brain

    Publikation: KonferencebidragKonferenceabstrakt til konferenceForskningpeer review

Vis graf over relationer
The quantification of perfusion using dynamic susceptibility contrast MRI (DSC-MRI) requires deconvolution to obtain the residual impulse response function (IRF). In this work, a method using the Gaussian process for deconvolution (GPD) is proposed. The fact that the IRF is smooth is incorporated as a constraint in the method. The GPD method, which automatically estimates the noise level in each voxel, has the advantage that model parameters are optimized automatically. The GPD is compared to singular value decomposition (SVD) using a common threshold for the singular values, and to SVD using a threshold optimized according to the noise level in each voxel. The comparison is carried out using artificial data as well as data from healthy volunteers. It is shown that GPD is comparable to SVD with a variable optimized threshold when determining the maximum of the IRF, which is directly related to the perfusion. GPD provides a better estimate of the entire IRF. As the signal-to-noise ratio (SNR) increases or the time resolution of the measurements increases, GPD is shown to be superior to SVD. This is also found for large distribution volumes.
OriginalsprogEngelsk
TidsskriftMagnetic Resonance in Medicine
Vol/bind48
Udgave nummer2
Sider (fra-til)351-61
Antal sider10
ISSN0740-3194
DOI
StatusUdgivet - 2002

Bibliografisk note

Copyright 2002 Wiley-Liss, Inc.

ID: 32505952