Forskning
Udskriv Udskriv
Switch language
Region Hovedstaden - en del af Københavns Universitetshospital
Udgivet

Optimizing the electric field strength in multiple targets for multichannel transcranial electric stimulation

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

DOI

  1. Auditory stimulus-response modeling with a Match-Mismatch task

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  2. Transducer modeling for accurate acoustic simulations of transcranial focused ultrasound stimulation

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  3. Frequency of different subtypes of cervical dystonia: a prospective multicenter study according to Col-Cap concept

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  4. Electric field simulations for transcranial brain stimulation using FEM: an efficient implementation and error analysis

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  1. Detection of biological signals from a live mammalian muscle using an early stage diamond quantum sensor

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  2. Interindividual variability of electric fields during transcranial temporal interference stimulation (tTIS)

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  3. Ergodicity-breaking reveals time optimal decision making in humans

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  4. Estimation of individually induced e-field strength during transcranial electric stimulation using the head circumference

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  5. Concurrent TMS-fMRI for causal network perturbation and proof of target engagement

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

Vis graf over relationer

OBJECTIVE: Most approaches to optimize the electric field pattern generated by multichannel Transcranial Electric Stimulation (TES) require the definition of a preferred direction of the electric field in the target region(s). However, this requires knowledge about how the neural effects depend on the field direction, which is not always available. Thus, it can be preferential to optimize the field strength in the target(s), irrespective of the field direction. However, this results in a more complex optimization problem.

APPROACH: We introduce and validate a novel optimization algorithm that maximizes focality while controlling the electric field strength in the target to maintain a defined value. It obeys the safety constraints, allows limiting the number of active electrodes and allows also for multi-target optimization.

MAIN RESULTS: The optimization algorithm outperformed naïve search approaches in both quality of the solution and computational efficiency. Using the amygdala as test case, we show that it allows for reaching a reasonable trade-off between focality and field strength in the target. In contrast, simply maximizing the field strength in the target results in far more extended fields. In addition, by maintaining the pre-defined field strengths in the targets, the new algorithm allows for a balanced stimulation of two or more regions.

SIGNIFICANCE: The novel algorithm can be used to automatically obtain individualized, optimal montages for targeting regions without the need to define preferential directions. It will automatically select the field direction that achieves the desired field strength in the target(s) with the most focal stimulation pattern.

OriginalsprogEngelsk
Artikelnummer014001
TidsskriftJournal of Neural Engineering
Vol/bind18
Udgave nummer1
ISSN1741-2560
DOI
StatusUdgivet - 11 feb. 2021

ID: 61228213