On feature relevance in image-based prediction models: An empirical study

Ender Konukoglu, Melanie Ganz, Koen Van Leemput, Mert R. Sabuncu

2 Citationer (Scopus)

Abstract

Determining disease-related variations of the anatomy and function is an important step in better understanding diseases and developing early diagnostic systems. In particular, image-based multivariate prediction models and the "relevant features" they produce are attracting attention from the community. In this article, we present an empirical study on the relevant features produced by two recently developed discriminative learning algorithms: neighborhood approximation forests (NAF) and the relevance voxel machine (RVoxM). Specifically, we examine whether the sets of features these methods produce are exhaustive; that is whether the features that are not marked as relevant carry disease-related information. We perform experiments on three different problems: image-based regression on a synthetic dataset for which the set of relevant features is known, regression of subject age as well as binary classification of Alzheimer's Disease (AD) from brain Magnetic Resonance Imaging (MRI) data. Our experiments demonstrate that aging-related and AD-related variations are widespread and the initial sets of relevant features discovered by the methods are not exhaustive. Our findings show that by knocking-out features and re-training models, a much larger set of disease-related features can be identified.

OriginalsprogEngelsk
TitelMachine Learning in Medical Imaging - 4th International Workshop, MLMI 2013, Held in Conjunction with MICCAI 2013, Proceedings
Antal sider8
ForlagSpringer Verlag
Publikationsdato2013
Sider171-178
ISBN (Trykt)9783319022666
DOI
StatusUdgivet - 2013
Udgivet eksterntJa
Begivenhed4th International Workshop on Machine Learning in Medical Imaging, MLMI 2013, Held in Conjunction with 16th International Conference on Medical Image Computing and Computer Assisted Intervention, MICCAI 2013 - Nagoya, Japan
Varighed: 22 sep. 201322 sep. 2013

Konference

Konference4th International Workshop on Machine Learning in Medical Imaging, MLMI 2013, Held in Conjunction with 16th International Conference on Medical Image Computing and Computer Assisted Intervention, MICCAI 2013
Land/OmrådeJapan
ByNagoya
Periode22/09/201322/09/2013
NavnLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Vol/bind8184 LNCS
ISSN0302-9743

Fingeraftryk

Dyk ned i forskningsemnerne om 'On feature relevance in image-based prediction models: An empirical study'. Sammen danner de et unikt fingeraftryk.

Citationsformater