Forskning
Udskriv Udskriv
Switch language
Region Hovedstaden - en del af Københavns Universitetshospital
Udgivet

Neuronal loss, demyelination and volume change in the multiple sclerosis neocortex

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

DOI

  1. Differences in distribution and regulation of astrocytic aquaporin-4 in human and rat hydrocephalic brain

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  1. Author Correction: Assessment of brain reference genes for RT-qPCR studies in neurodegenerative diseases

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  2. Epigenetic modulation of AREL1 and increased HLA expression in brains of multiple system atrophy patients

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  3. Distinct Autoimmune Anti-α-Synuclein Antibody Patterns in Multiple System Atrophy and Parkinson’s Disease

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  4. Authors' response: Association between IBD and Parkinson's disease: seek and you shall find?

    Publikation: Bidrag til tidsskriftKommentar/debatForskning

  5. Misfolded SOD1 inclusions in patients with mutations in C9orf72 and other ALS/FTD-associated genes

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  • D Carassiti
  • D R Altmann
  • N Petrova
  • B Pakkenberg
  • F Scaravilli
  • K Schmierer
Vis graf over relationer
Aims Indices of brain volume [grey matter, white matter (WM), lesions] are being used as outcomes in clinical trials of patients with multiple sclerosis (MS). We investigated the relationship between cortical volume, the number of neocortical neurons estimated using stereology and demyelination. Methods Nine MS and seven control hemispheres were dissected into coronal slices. On sections stained for Giemsa, the cortex was outlined and optical disectors applied using systematic uniform random sampling. Neurons were counted using an oil immersion objective (× 60) following stereological principles. Grey and WM demyelination was outlined on myelin basic protein immunostained sections, and expressed as percentages of cortex and WM respectively. Results In MS, the mean number of neurons was 14.9 ± 1.9 billion vs. 24.4 ± 2.4 billion in controls (P < 0.011), a 39% difference. The density of neurons was smaller by 28% (P < 0.001) and cortical volume by 26% (P = 0.1). Strong association was detected between number of neurons and cortical volume (P < 0.0001). Demyelination affected 40 ± 13% of the MS neocortex and 9 ± 12% of the WM, however, neither correlated with neuronal loss. Only weak association was detected between number of neurons and WM volume. Conclusion Neocortical neuronal loss in MS is massive and strongly predicted by cortical volume. Cortical volume decline detected in vivo may be similarly indicative of neuronal loss. Lack of association between neuronal density and demyelination suggests these features are partially independent, at least in chronic MS.
OriginalsprogEngelsk
TidsskriftNeuropathology and Applied Neurobiology
ISSN0305-1846
DOI
StatusUdgivet - 1 jun. 2017

ID: 52335115