TY - JOUR
T1 - Neuromuscular Fatigue and Metabolism during High-Intensity Intermittent Exercise
AU - Fiorenza, Matteo
AU - Hostrup, Morten
AU - Gunnarsson, Thomas P
AU - Shirai, Yusuke
AU - Schena, Federico
AU - Iaia, F Marcello
AU - Bangsbo, Jens
PY - 2019/8
Y1 - 2019/8
N2 - PURPOSE: To examine the degree of neuromuscular fatigue development along with changes in muscle metabolism during two work-matched high-intensity intermittent exercise protocols in trained individuals.METHODS: In a randomized, counter-balanced, crossover design, 11 endurance-trained men performed high-intensity intermittent cycle exercise protocols matched for total work and including either multiple short-duration (18 × 5 s; SS) or long-duration (6 × 20 s; LS) sprints. Neuromuscular fatigue was determined by preexercise to postexercise changes in maximal voluntary contraction force, voluntary activation level and contractile properties of the quadriceps muscle. Metabolites and pH were measured in vastus lateralis muscle biopsies taken before and after the first and last sprint of each exercise protocol.RESULTS: Peak power output (11% ± 2% vs 16% ± 8%, P < 0.01), maximal voluntary contraction (10% ± 5% vs 25% ± 6%, P < 0.05), and peak twitch force (34% ± 5% vs 67% ± 5%, P < 0.01) declined to a lesser extent in SS than LS, whereas voluntary activation level decreased similarly in SS and LS (10% ± 2% vs 11% ± 4%). Muscle [phosphocreatine] before the last sprint was 1.5-fold lower in SS than LS (P < 0.001). Preexercise to postexercise intramuscular accumulation of lactate and H was twofold and threefold lower, respectively, in SS than LS (P < 0.001), whereas muscle glycogen depletion was similar in SS and LS. Rate of muscle glycolysis was similar in SS and LS during the first sprint, but twofold higher in SS than LS during the last sprint (P < 0.05).CONCLUSIONS: These findings indicate that, in endurance-trained individuals, multiple long-sprints induce larger impairments in performance along with greater degrees of peripheral fatigue compared to work-matched multiple short-sprints, with these differences being possibly attributed to more extensive intramuscular accumulation of lactate/H and to lower rates of glycolysis during multiple long-sprint exercise.
AB - PURPOSE: To examine the degree of neuromuscular fatigue development along with changes in muscle metabolism during two work-matched high-intensity intermittent exercise protocols in trained individuals.METHODS: In a randomized, counter-balanced, crossover design, 11 endurance-trained men performed high-intensity intermittent cycle exercise protocols matched for total work and including either multiple short-duration (18 × 5 s; SS) or long-duration (6 × 20 s; LS) sprints. Neuromuscular fatigue was determined by preexercise to postexercise changes in maximal voluntary contraction force, voluntary activation level and contractile properties of the quadriceps muscle. Metabolites and pH were measured in vastus lateralis muscle biopsies taken before and after the first and last sprint of each exercise protocol.RESULTS: Peak power output (11% ± 2% vs 16% ± 8%, P < 0.01), maximal voluntary contraction (10% ± 5% vs 25% ± 6%, P < 0.05), and peak twitch force (34% ± 5% vs 67% ± 5%, P < 0.01) declined to a lesser extent in SS than LS, whereas voluntary activation level decreased similarly in SS and LS (10% ± 2% vs 11% ± 4%). Muscle [phosphocreatine] before the last sprint was 1.5-fold lower in SS than LS (P < 0.001). Preexercise to postexercise intramuscular accumulation of lactate and H was twofold and threefold lower, respectively, in SS than LS (P < 0.001), whereas muscle glycogen depletion was similar in SS and LS. Rate of muscle glycolysis was similar in SS and LS during the first sprint, but twofold higher in SS than LS during the last sprint (P < 0.05).CONCLUSIONS: These findings indicate that, in endurance-trained individuals, multiple long-sprints induce larger impairments in performance along with greater degrees of peripheral fatigue compared to work-matched multiple short-sprints, with these differences being possibly attributed to more extensive intramuscular accumulation of lactate/H and to lower rates of glycolysis during multiple long-sprint exercise.
KW - all-out exercise
KW - central fatigue
KW - performance
KW - peripheral fatigue
KW - repeated sprints
KW - sprint interval training (SIT)
UR - http://www.scopus.com/inward/record.url?scp=85068880813&partnerID=8YFLogxK
U2 - 10.1249/MSS.0000000000001959
DO - 10.1249/MSS.0000000000001959
M3 - Journal article
C2 - 30817710
SN - 0195-9131
VL - 51
SP - 1642
EP - 1652
JO - Medicine and Science in Sports and Exercise
JF - Medicine and Science in Sports and Exercise
IS - 8
ER -