Forskning
Udskriv Udskriv
Switch language
Region Hovedstaden - en del af Københavns Universitetshospital
Udgivet

NetSurfP-3.0: accurate and fast prediction of protein structural features by protein language models and deep learning

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

DOI

  1. DeepLoc 2.0: Multi-label subcellular localization prediction using protein language models

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  2. Does rapid sequence divergence preclude RNA structure conservation in vertebrates?

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  3. VEuPathDB: the eukaryotic pathogen, vector and host bioinformatics resource center

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  4. Unveiling mRNP composition by fluorescence correlation and cross-correlation spectroscopy using cell lysates

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  5. CRISPRloci: Comprehensive and accurate annotation of CRISPR-Cas systems

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  1. DeepLoc 2.0: Multi-label subcellular localization prediction using protein language models

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  2. SignalP 6.0 predicts all five types of signal peptides using protein language models

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  3. Calibrated uncertainty for molecular property prediction using ensembles of message passing neural networks

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  4. Interpretable Autoencoders Trained on Single Cell Sequencing Data Can Transfer Directly to Data from Unseen Tissues

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  5. A Comparison of Tools for Copy-Number Variation Detection in Germline Whole Exome and Whole Genome Sequencing Data

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  • Magnus Haraldson Høie
  • Erik Nicolas Kiehl
  • Bent Petersen
  • Morten Nielsen
  • Ole Winther
  • Henrik Nielsen
  • Jeppe Hallgren
  • Paolo Marcatili
Vis graf over relationer

Recent advances in machine learning and natural language processing have made it possible to profoundly advance our ability to accurately predict protein structures and their functions. While such improvements are significantly impacting the fields of biology and biotechnology at large, such methods have the downside of high demands in terms of computing power and runtime, hampering their applicability to large datasets. Here, we present NetSurfP-3.0, a tool for predicting solvent accessibility, secondary structure, structural disorder and backbone dihedral angles for each residue of an amino acid sequence. This NetSurfP update exploits recent advances in pre-trained protein language models to drastically improve the runtime of its predecessor by two orders of magnitude, while displaying similar prediction performance. We assessed the accuracy of NetSurfP-3.0 on several independent test datasets and found it to consistently produce state-of-the-art predictions for each of its output features, with a runtime that is up to to 600 times faster than the most commonly available methods performing the same tasks. The tool is freely available as a web server with a user-friendly interface to navigate the results, as well as a standalone downloadable package.

OriginalsprogEngelsk
TidsskriftNucleic Acids Research
Vol/bind50
Udgave nummerW1
Sider (fra-til)W510-W515
ISSN0305-1048
DOI
StatusUdgivet - 5 jul. 2022

Bibliografisk note

© The Author(s) 2022. Published by Oxford University Press on behalf of Nucleic Acids Research.

ID: 78375812