Forskning
Udskriv Udskriv
Switch language
Region Hovedstaden - en del af Københavns Universitetshospital
Udgivet

Nationwide prediction of type 2 diabetes comorbidities

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

DOI

  1. Automatic airway segmentation from computed tomography using robust and efficient 3-D convolutional neural networks

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  2. Detection of biological signals from a live mammalian muscle using an early stage diamond quantum sensor

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  3. Infants with congenital heart defects have reduced brain volumes

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  4. SARS-CoV-2 detection using reverse transcription strand invasion based amplification and a portable compact size instrument

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  1. Mortality of older acutely admitted medical patients after early discharge from emergency departments: a nationwide cohort study

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  2. Twenty-five years of triptans - a nationwide population study

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

Vis graf over relationer

Identification of individuals at risk of developing disease comorbidities represents an important task in tackling the growing personal and societal burdens associated with chronic diseases. We employed machine learning techniques to investigate to what extent data from longitudinal, nationwide Danish health registers can be used to predict individuals at high risk of developing type 2 diabetes (T2D) comorbidities. Leveraging logistic regression-, random forest- and gradient boosting models and register data spanning hospitalizations, drug prescriptions and contacts with primary care contractors from >200,000 individuals newly diagnosed with T2D, we predicted five-year risk of heart failure (HF), myocardial infarction (MI), stroke (ST), cardiovascular disease (CVD) and chronic kidney disease (CKD). For HF, MI, CVD, and CKD, register-based models outperformed a reference model leveraging canonical individual characteristics by achieving area under the receiver operating characteristic curve improvements of 0.06, 0.03, 0.04, and 0.07, respectively. The top 1,000 patients predicted to be at highest risk exhibited observed incidence ratios exceeding 4.99, 3.52, 1.97 and 4.71 respectively. In summary, prediction of T2D comorbidities utilizing Danish registers led to consistent albeit modest performance improvements over reference models, suggesting that register data could be leveraged to systematically identify individuals at risk of developing disease comorbidities.

OriginalsprogEngelsk
Artikelnummer1776
TidsskriftScientific Reports
Vol/bind10
Udgave nummer1
Sider (fra-til)1776
ISSN2045-2322
DOI
StatusUdgivet - 4 feb. 2020

ID: 61824936