Abstract
Interleukin-6 (IL-6) is produced locally in working skeletal muscle and can account for the exercise-induced increase in plasma IL-6. The transcription rate for IL-6 in muscle nuclei isolated from muscle biopsies during exercise is very high and is enhanced further when muscle glycogen content is low. Furthermore, cultured human primary muscle cells can increase IL-6 mRNA when incubated with the calcium ionophore ionomycin and it is likely that myocytes produce IL-6 in response to muscle contraction. The biological roles of muscle-derived IL-6 have been investigated in studies in which human recombinant IL-6 was infused in healthy volunteers to mimic closely the IL-6 concentrations observed during prolonged exercise. Using stable isotopes, we have demonstrated that physiological concentrations of IL-6 induce lipolysis. Although we have yet to determine the precise biological action of muscle-derived IL-6, our data support the hypothesis that the role of IL-6 released from contracting muscle during exercise is to act in a hormone-like manner to mobilize extracellular substrates and/or augment substrate delivery during exercise. In addition, IL-6 inhibits low-level TNF-alpha production, and IL-6 produced during exercise probably inhibits TNF-alpha-induced insulin resistance in peripheral tissues. Hence, IL-6 produced by skeletal muscle during contraction may play an important role in the beneficial health effects of exercise
Originalsprog | Engelsk |
---|---|
Tidsskrift | Pfluegers Archiv |
Vol/bind | 446 |
Udgave nummer | 1 |
Sider (fra-til) | 9-16 |
Antal sider | 8 |
ISSN | 0031-6768 |
DOI | |
Status | Udgivet - apr. 2003 |
Udgivet eksternt | Ja |