Multisensory Interactions between Auditory and Haptic Object Recognition

Tanja Kassuba, Mareike M Menz, Brigitte Röder, Hartwig R Siebner

26 Citationer (Scopus)


Object manipulation produces characteristic sounds and causes specific haptic sensations that facilitate the recognition of the manipulated object. To identify the neural correlates of audio-haptic binding of object features, healthy volunteers underwent functional magnetic resonance imaging while they matched a target object to a sample object within and across audition and touch. By introducing a delay between the presentation of sample and target stimuli, it was possible to dissociate haptic-to-auditory and auditory-to-haptic matching. We hypothesized that only semantically coherent auditory and haptic object features activate cortical regions that host unified conceptual object representations. The left fusiform gyrus (FG) and posterior superior temporal sulcus (pSTS) showed increased activation during crossmodal matching of semantically congruent but not incongruent object stimuli. In the FG, this effect was found for haptic-to-auditory and auditory-to-haptic matching, whereas the pSTS only displayed a crossmodal matching effect for congruent auditory targets. Auditory and somatosensory association cortices showed increased activity during crossmodal object matching which was, however, independent of semantic congruency. Together, the results show multisensory interactions at different hierarchical stages of auditory and haptic object processing. Object-specific crossmodal interactions culminate in the left FG, which may provide a higher order convergence zone for conceptual object knowledge.
TidsskriftCerebral Cortex
Udgave nummer5
Sider (fra-til)1097-107
StatusUdgivet - 2013


Dyk ned i forskningsemnerne om 'Multisensory Interactions between Auditory and Haptic Object Recognition'. Sammen danner de et unikt fingeraftryk.