Multimodal 3D Mouse Brain Atlas Framework with the Skull-Derived Coordinate System

Johanna Perens, Casper Gravesen Salinas, Urmas Roostalu, Jacob Lercke Skytte, Carsten Gundlach, Jacob Hecksher-Sørensen, Anders Bjorholm Dahl, Tim B Dyrby

1 Citationer (Scopus)


Magnetic resonance imaging (MRI) and light-sheet fluorescence microscopy (LSFM) are technologies that enable non-disruptive 3-dimensional imaging of whole mouse brains. A combination of complementary information from both modalities is desirable for studying neuroscience in general, disease progression and drug efficacy. Although both technologies rely on atlas mapping for quantitative analyses, the translation of LSFM recorded data to MRI templates has been complicated by the morphological changes inflicted by tissue clearing and the enormous size of the raw data sets. Consequently, there is an unmet need for tools that will facilitate fast and accurate translation of LSFM recorded brains to in vivo, non-distorted templates. In this study, we have developed a bidirectional multimodal atlas framework that includes brain templates based on both imaging modalities, region delineations from the Allen's Common Coordinate Framework, and a skull-derived stereotaxic coordinate system. The framework also provides algorithms for bidirectional transformation of results obtained using either MR or LSFM (iDISCO cleared) mouse brain imaging while the coordinate system enables users to easily assign in vivo coordinates across the different brain templates.

Udgave nummer2
Sider (fra-til)269-286
Antal sider18
StatusUdgivet - apr. 2023


Dyk ned i forskningsemnerne om 'Multimodal 3D Mouse Brain Atlas Framework with the Skull-Derived Coordinate System'. Sammen danner de et unikt fingeraftryk.