Forskning
Udskriv Udskriv
Switch language
Region Hovedstaden - en del af Københavns Universitetshospital
Udgivet

Multidimensional diffusion MRI with spectrally modulated gradients reveals unprecedented microstructural detail

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

DOI

  1. Lipidomic profiles, lipid trajectories and clinical biomarkers in female elite endurance athletes

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  2. Describing the fecal metabolome in cryogenically collected samples from healthy participants

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  3. A prospective three-year follow-up study on the clinical significance of anti-neuronal antibodies in acute psychiatric disorders

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  4. Inhibition of epileptiform activity by neuropeptide Y in brain tissue from drug-resistant temporal lobe epilepsy patients

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  5. A Weighted Genetic Risk Score of Adult Glioma Susceptibility Loci Associated with Pediatric Brain Tumor Risk

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

Vis graf over relationer

Characterization of porous media is essential in a wide range of biomedical and industrial applications. Microstructural features can be probed non-invasively by diffusion magnetic resonance imaging (dMRI). However, diffusion encoding in conventional dMRI may yield similar signatures for very different microstructures, which represents a significant limitation for disentangling individual microstructural features in heterogeneous materials. To solve this problem, we propose an augmented multidimensional diffusion encoding (MDE) framework, which unlocks a novel encoding dimension to assess time-dependent diffusion specific to structures with different microscopic anisotropies. Our approach relies on spectral analysis of complex but experimentally efficient MDE waveforms. Two independent contrasts to differentiate features such as cell shape and size can be generated directly by signal subtraction from only three types of measurements. Analytical calculations and simulations support our experimental observations. Proof-of-concept experiments were applied on samples with known and distinctly different microstructures. We further demonstrate substantially different contrasts in different tissue types of a post mortem brain. Our simultaneous assessment of restriction size and shape may be instrumental in studies of a wide range of porous materials, enable new insights into the microstructure of biological tissues or be of great value in diagnostics.

OriginalsprogEngelsk
Artikelnummer9026
TidsskriftScientific Reports
Vol/bind9
Udgave nummer1
Sider (fra-til)1-12
Antal sider12
ISSN2045-2322
DOI
StatusUdgivet - 21 jun. 2019

ID: 57418622