Forskning
Udskriv Udskriv
Switch language
Region Hovedstaden - en del af Københavns Universitetshospital
Udgivet

Motor Imagery based Brain Computer Interface Paradigm for Upper Limb Stroke Rehabilitation

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

DOI

  1. A Clinically Applicable Interactive Micro and Macro-Sleep Staging Algorithm for Elderly and Patients with Neurodegeneration

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  2. Towards a Flexible Deep Learning Method for Automatic Detection of Clinically Relevant Multi-Modal Events in the Polysomnogram

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  3. A Blind Source-Based Method for Automated Artifact-Correction in Standard Sleep EEG

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  4. A New Fully Automated Random-Forest Algorithm for Sleep Staging

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  5. Deep residual networks for automatic sleep stage classification of raw polysomnographic waveforms

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  1. Workforce Attachment after Ischemic Stroke – The Importance of Time to Thrombolytic Therapy

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  2. Assessment of patients with a suspected cardioembolic ischemic stroke. A national consensus statement

    Publikation: Bidrag til tidsskriftReviewForskningpeer review

  3. Global Impact of COVID-19 on Stroke Care and IV Thrombolysis

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

Vis graf over relationer

Motor Imagery (MI) based Brain Computer Interface (BCI) systems have shown potential to serve as a tool for neurorehabilitation for post stroke patients to complement the standard therapy. The aim of this study was to develop an MI based BCI system that could potentially be used in neurorehabilitation of hand motor function in stroke patients. Two co-adaptive, three-class MI based BCI systems for realtime processing were developed and compared using the publicly available data from the BCI Competition III Dataset V as well as our own data. The first algorithm utilizes the Filterbank Common Spatial Pattern (FBCSP) for feature extraction, and the other utilizes the Separable Common Spatio-Spectral Pattern (SCSSP) - both combined with a Multi-layer Perceptron (MLP) for classification. The proposed system proved successful when using the competition data showing an average accuracy of 64.71 % for the SCSSP compared to 60.48% for the FBCSP. This proved superior to a related study using the same feature extraction methods, but with other classification methods. The proposed system, however did show results around chance level for the 3-class MI experimental data that we have collected in our laboratory. Further studies needs to be conducted to improve the performance as well as to realize such a system to put in use.

OriginalsprogEngelsk
TidsskriftI E E E Engineering in Medicine and Biology Society. Conference Proceedings
Vol/bind2018
Sider (fra-til)1960-1963
Antal sider4
ISSN1557-170X
DOI
StatusUdgivet - 2018

ID: 56480692