Forskning
Udskriv Udskriv
Switch language
Region Hovedstaden - en del af Københavns Universitetshospital
Udgivet

Monitoring of blood oxygenation in brain by resonance Raman spectroscopy

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

DOI

  1. Two optical coherence tomography systems detect topical gold nanoshells in hair follicles, sweat ducts and measure epidermis

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  1. Steady-state visual evoked potential temporal dynamics reveal correlates of cognitive decline

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  2. Precapillary sphincters maintain perfusion in the cerebral cortex

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  3. Continuous EEG Monitoring in a Consecutive Patient Cohort with Sepsis and Delirium

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  4. Apolipoprotein M-bound sphingosine-1-phosphate regulates blood-brain barrier paracellular permeability and transcytosis

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  5. Deep sleep drives brain fluid oscillations

    Publikation: Bidrag til tidsskriftKommentar/debatForskningpeer review

Vis graf over relationer

Blood oxygenation in cerebral vessels is an essential parameter to evaluate brain function and to investigate the coupling between local blood flow and neuronal activity. We apply resonance Raman spectroscopy in vivo to study hemoglobin oxygenation in cortex vessels of anesthetized ventilated mice. We demonstrate that the pairs of Raman peaks at 1355 and1375 cm-1 (symmetric vibrations of pyrrol half-rings in the heme molecule), 1552 and 1585 cm-1 and 1602 and 1638 cm-1 (vibrations of methine bridges in heme molecule) are reliable markers for quantitative estimation of the relative amount of oxyhemoglobin in venules, arterioles, and capillaries. in vivo measurements of blood oxygenation in the cortex of mice ventilated with inspiratory gas mixtures containing different amounts of oxygen-normoxia, hyperoxia and hypoxia-validate the proposed approach. Our method allows to visualize blood saturation with O2 in different microvascular networks.

OriginalsprogEngelsk
TidsskriftJournal of Biophotonics
Vol/bind11
Udgave nummer6
Sider (fra-til)e201700311
ISSN1864-063X
DOI
StatusUdgivet - 2018

ID: 56226036