Forskning
Udskriv Udskriv
Switch language
Region Hovedstaden - en del af Københavns Universitetshospital
Udgivet

Molecular genetic analysis using targeted NGS analysis of 677 individuals with retinal dystrophy

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

DOI

  1. Discrete finger sequences are widely represented in human striatum

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  2. Author Correction: Assessment of brain reference genes for RT-qPCR studies in neurodegenerative diseases

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  3. Validation of the four-miRNA biomarker panel MiCaP for prediction of long-term prostate cancer outcome

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  1. upd(20)mat is a rare cause of the Silver-Russell-syndrome-like phenotype: Two unrelated cases and screening of large cohorts

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  2. Delineation of phenotypes and genotypes related to cohesin structural protein RAD21

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  3. Distribution of risk alleles in patients with age-related macular degeneration

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  4. Chromothripsis and DNA Repair Disorders

    Publikation: Bidrag til tidsskriftReviewForskningpeer review

Vis graf over relationer

Inherited retinal diseases (IRDs) are a common cause of visual impairment. IRD covers a set of genetically highly heterogeneous disorders with more than 150 genes associated with one or more clinical forms of IRD. Molecular genetic diagnosis has become increasingly important especially due to expanding number of gene therapy strategies under development. Next generation sequencing (NGS) of gene panels has proven a valuable diagnostic tool in IRD. We present the molecular findings of 677 individuals, residing in Denmark, with IRD and report 806 variants of which 187 are novel. We found that deletions and duplications spanning one or more exons can explain 3% of the cases, and thus copy number variation (CNV) analysis is important in molecular genetic diagnostics of IRD. Seven percent of the individuals have variants classified as pathogenic or likely-pathogenic in more than one gene. Possible Danish founder variants in EYS and RP1 are reported. A significant number of variants were classified as variants with unknown significance; reporting of these will hopefully contribute to the elucidation of the actual clinical consequence making the classification less troublesome in the future. In conclusion, this study underlines the relevance of performing targeted sequencing of IRD including CNV analysis as well as the importance of interaction with clinical diagnoses.

OriginalsprogEngelsk
TidsskriftScientific Reports
Vol/bind9
Udgave nummer1
Sider (fra-til)1219
ISSN2045-2322
DOI
StatusUdgivet - 4 feb. 2019

ID: 58249720