Forskning
Udskriv Udskriv
Switch language
Region Hovedstaden - en del af Københavns Universitetshospital
Udgivet

Modification of oxygen consumption and blood flow in mouse somatosensory cortex by cell-type-specific neuronal activity

Publikation: Bidrag til tidsskriftTidsskriftartikelpeer review

DOI

  1. Deep-learning-based attenuation correction in dynamic [15O]H2O studies using PET/MRI in healthy volunteers

    Publikation: Bidrag til tidsskriftTidsskriftartikelpeer review

  2. Early stopping in clinical PET studies: How to reduce expense and exposure

    Publikation: Bidrag til tidsskriftReviewpeer review

  3. Parkinson patients have a presynaptic serotonergic deficit: A dynamic deep brain stimulation PET study

    Publikation: Bidrag til tidsskriftTidsskriftartikelpeer review

  4. False positive rates in positron emission tomography (PET) voxelwise analyses

    Publikation: Bidrag til tidsskriftTidsskriftartikelpeer review

  1. Shedding Light on the Blood-Brain Barrier Transport with Two-Photon Microscopy In Vivo

    Publikation: Bidrag til tidsskriftTidsskriftartikelpeer review

  2. Brain barriers and their potential role in migraine pathophysiology

    Publikation: Bidrag til tidsskriftReviewpeer review

  3. Automatic continuous EEG signal analysis for diagnosis of delirium in patients with sepsis

    Publikation: Bidrag til tidsskriftTidsskriftartikelpeer review

Vis graf over relationer

Gamma activity arising from the interplay between pyramidal neurons and fast-spiking parvalbumin (PV) interneurons is an integral part of higher cognitive functions and is assumed to contribute significantly to brain metabolic responses. Cerebral metabolic rate of oxygen (CMRO 2) responses were evoked by optogenetic stimulation of cortical PV interneurons and pyramidal neurons. We found that CMRO 2 responses depended on neuronal activation, but not on the power of gamma activity induced by optogenetic stimulation. This implies that evoked gamma activity per se is not energy demanding. Optogenetic stimulation of PV interneurons during somatosensory stimulation reduced excitatory neuronal activity but did not potentiate O 2 consumption as previously hypothesized. In conclusion, our data suggest that activity-driven CMRO 2 responses depend on neuronal excitation rather than the cerebral rhythmic activity they induce. Excitation of both excitatory and inhibitory neurons requires energy, but inhibition of cortical excitatory neurons by interneurons does not potentiate activity-driven energy consumption.

OriginalsprogEngelsk
TidsskriftJournal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism
Vol/bind40
Udgave nummer10
Sider (fra-til)2010-2025
Antal sider16
ISSN0271-678X
DOI
StatusUdgivet - okt. 2020

ID: 59152033