TY - JOUR
T1 - Migraine can be induced by sildenafil without changes in middle cerebral artery diameter
AU - Kruuse, Christina
AU - Thomsen, Lars Lykke
AU - Birk, Steffen
AU - Olesen, Jes
PY - 2003/1
Y1 - 2003/1
N2 - Migraine is considered a neurovascular disease involving dilatation of cerebral arteries. Nitric oxide (NO) donors induce dilatation of cerebral and extracranial arteries and migraine, but NO has several mechanisms of action in addition to its cyclic guanosine monophosphate (cGMP)-mediated vasodilatation. We examined whether sildenafil (Viagra), a selective inhibitor of cGMP-hydrolysing phosphodiesterase 5 (PDE5), which acts exclusively by increasing cGMP, can induce migraine and dilatation of cerebral arteries. We included 12 patients with migraine without aura in this double-blind, placebo-controlled crossover study, in which placebo or sildenafil 100 mg was administered orally on two separate days. Blood flow velocity in the middle cerebral artery (V(mca)) was recorded by transcranial Doppler ultrasonography and regional cerebral blood flow in the territory of the middle cerebral artery (rCBF(mca)) was measured using SPECT (single photon emission computed tomography) and xenon 133 inhalation. Radial and temporal artery diameters were studied using high-frequency ultrasonography. Headache response, tenderness of pericranial muscles, blood pressure and heart rate were measured repeatedly. We found that migraine attack was induced by sildenafil in 10 of 12 migraine patients and by placebo in two of 12 patients (P = 0.01). V(mca) (P = 0.1) and rCBF(mca) (P = 0.93) remained unchanged after sildenafil. Temporal (P = 0.47) and radial (P = 0.87) artery diameter and pericranial tenderness (P = 0.16) were unaffected by sildenafil. Systolic and diastolic blood pressures were unchanged but heart rate increased from a mean of 62 +/- 2 to 74 +/- 3 beats/min (P = 0.01) after sildenafil. Our results demonstrate that migraine may be induced via a cGMP-dependent mechanism, and we show for the first time that this occurs without initial dilatation of the middle cerebral artery. We propose that triggering mechanisms may reside within the perivascular sensory nerve terminals or the brainstem. However, other sites of action may also be possible and future studies are needed to elucidate this. In the clinical use of sildenafil, patients who have migraine should be informed about the risk of migraine attacks.
AB - Migraine is considered a neurovascular disease involving dilatation of cerebral arteries. Nitric oxide (NO) donors induce dilatation of cerebral and extracranial arteries and migraine, but NO has several mechanisms of action in addition to its cyclic guanosine monophosphate (cGMP)-mediated vasodilatation. We examined whether sildenafil (Viagra), a selective inhibitor of cGMP-hydrolysing phosphodiesterase 5 (PDE5), which acts exclusively by increasing cGMP, can induce migraine and dilatation of cerebral arteries. We included 12 patients with migraine without aura in this double-blind, placebo-controlled crossover study, in which placebo or sildenafil 100 mg was administered orally on two separate days. Blood flow velocity in the middle cerebral artery (V(mca)) was recorded by transcranial Doppler ultrasonography and regional cerebral blood flow in the territory of the middle cerebral artery (rCBF(mca)) was measured using SPECT (single photon emission computed tomography) and xenon 133 inhalation. Radial and temporal artery diameters were studied using high-frequency ultrasonography. Headache response, tenderness of pericranial muscles, blood pressure and heart rate were measured repeatedly. We found that migraine attack was induced by sildenafil in 10 of 12 migraine patients and by placebo in two of 12 patients (P = 0.01). V(mca) (P = 0.1) and rCBF(mca) (P = 0.93) remained unchanged after sildenafil. Temporal (P = 0.47) and radial (P = 0.87) artery diameter and pericranial tenderness (P = 0.16) were unaffected by sildenafil. Systolic and diastolic blood pressures were unchanged but heart rate increased from a mean of 62 +/- 2 to 74 +/- 3 beats/min (P = 0.01) after sildenafil. Our results demonstrate that migraine may be induced via a cGMP-dependent mechanism, and we show for the first time that this occurs without initial dilatation of the middle cerebral artery. We propose that triggering mechanisms may reside within the perivascular sensory nerve terminals or the brainstem. However, other sites of action may also be possible and future studies are needed to elucidate this. In the clinical use of sildenafil, patients who have migraine should be informed about the risk of migraine attacks.
KW - 3',5'-Cyclic-GMP Phosphodiesterases
KW - Adult
KW - Blood Flow Velocity/drug effects
KW - Cross-Over Studies
KW - Cyclic Nucleotide Phosphodiesterases, Type 5
KW - Double-Blind Method
KW - Female
KW - Headache/chemically induced
KW - Heart Rate/drug effects
KW - Humans
KW - Male
KW - Middle Cerebral Artery/diagnostic imaging
KW - Migraine Disorders/chemically induced
KW - Phosphodiesterase Inhibitors
KW - Phosphoric Diester Hydrolases
KW - Piperazines
KW - Purines
KW - Radial Artery/diagnostic imaging
KW - Sildenafil Citrate
KW - Sulfones
KW - Temporal Arteries/diagnostic imaging
KW - Tomography, Emission-Computed, Single-Photon
KW - Ultrasonography, Doppler
M3 - Journal article
C2 - 12477710
VL - 126
SP - 241
EP - 247
JO - Brain
JF - Brain
SN - 0006-8950
IS - Pt 1
ER -