TY - JOUR
T1 - Measurement of Whole-Brain and Gray Matter Atrophy in Multiple Sclerosis
T2 - Assessment with MR Imaging
AU - Storelli, Loredana
AU - Rocca, Maria A
AU - Pagani, Elisabetta
AU - Van Hecke, Wim
AU - Horsfield, Mark A
AU - De Stefano, Nicola
AU - Rovira, Alex
AU - Sastre-Garriga, Jaume
AU - Palace, Jacqueline
AU - Sima, Diana
AU - Smeets, Dirk
AU - Filippi, Massimo
AU - MAGNIMS Study Group
A2 - Frederiksen, Jette Lautrup Battistini
PY - 2018
Y1 - 2018
N2 - Purpose To compare available methods for whole-brain and gray matter (GM) atrophy estimation in multiple sclerosis (MS) in terms of repeatability (same magnetic resonance [MR] imaging unit) and reproducibility (different system/field strength) for their potential clinical applications. Materials and Methods The softwares ANTs-v1.9, CIVET-v2.1, FSL-SIENAX/SIENA-5.0.1, Icometrix-MSmetrix-1.7, and SPM-v12 were compared. This retrospective study, performed between March 2015 and March 2017, collected data from (a) eight simulated MR images and longitudinal data (2 weeks) from 10 healthy control subjects to assess the cross-sectional and longitudinal accuracy of atrophy measures, (b) test-retest MR images in 29 patients with MS acquired within the same day at different imaging unit field strengths/manufacturers to evaluate precision, and (c) longitudinal data (1 year) in 24 patients with MS for the agreement between methods. Tissue segmentation, image registration, and white matter (WM) lesion filling were also evaluated. Multiple paired t tests were used for comparisons. Results High values of accuracy (0.87-0.97) for whole-brain and GM volumes were found, with the lowest values for MSmetrix. ANTs showed the lowest mean error (0.02%) for whole-brain atrophy in healthy control subjects, with a coefficient of variation of 0.5%. SPM showed the smallest mean error (0.07%) and coefficient of variation (0.08%) for GM atrophy. Globally, good repeatability (P > .05) but poor reproducibility (P < .05) were found for all methods. WM lesion filling technique mainly affected ANTs, MSmetrix, and SPM results (P < .05). Conclusion From this comparison, it would be possible to select a software for atrophy measurement, depending on the requirements of the application (research center, clinical trial) and its goal (accuracy and repeatability or reproducibility). An improved reproducibility is required for clinical application. © RSNA, 2018 Online supplemental material is available for this article.
AB - Purpose To compare available methods for whole-brain and gray matter (GM) atrophy estimation in multiple sclerosis (MS) in terms of repeatability (same magnetic resonance [MR] imaging unit) and reproducibility (different system/field strength) for their potential clinical applications. Materials and Methods The softwares ANTs-v1.9, CIVET-v2.1, FSL-SIENAX/SIENA-5.0.1, Icometrix-MSmetrix-1.7, and SPM-v12 were compared. This retrospective study, performed between March 2015 and March 2017, collected data from (a) eight simulated MR images and longitudinal data (2 weeks) from 10 healthy control subjects to assess the cross-sectional and longitudinal accuracy of atrophy measures, (b) test-retest MR images in 29 patients with MS acquired within the same day at different imaging unit field strengths/manufacturers to evaluate precision, and (c) longitudinal data (1 year) in 24 patients with MS for the agreement between methods. Tissue segmentation, image registration, and white matter (WM) lesion filling were also evaluated. Multiple paired t tests were used for comparisons. Results High values of accuracy (0.87-0.97) for whole-brain and GM volumes were found, with the lowest values for MSmetrix. ANTs showed the lowest mean error (0.02%) for whole-brain atrophy in healthy control subjects, with a coefficient of variation of 0.5%. SPM showed the smallest mean error (0.07%) and coefficient of variation (0.08%) for GM atrophy. Globally, good repeatability (P > .05) but poor reproducibility (P < .05) were found for all methods. WM lesion filling technique mainly affected ANTs, MSmetrix, and SPM results (P < .05). Conclusion From this comparison, it would be possible to select a software for atrophy measurement, depending on the requirements of the application (research center, clinical trial) and its goal (accuracy and repeatability or reproducibility). An improved reproducibility is required for clinical application. © RSNA, 2018 Online supplemental material is available for this article.
KW - Adult
KW - Atrophy
KW - Brain/diagnostic imaging
KW - Cross-Sectional Studies
KW - Female
KW - Gray Matter/pathology
KW - Humans
KW - Image Processing, Computer-Assisted/methods
KW - Magnetic Resonance Imaging/methods
KW - Male
KW - Middle Aged
KW - Multiple Sclerosis/diagnostic imaging
KW - Reproducibility of Results
KW - Young Adult
U2 - 10.1148/radiol.2018172468
DO - 10.1148/radiol.2018172468
M3 - Journal article
C2 - 29714673
SN - 0033-8419
VL - 288
SP - 554
EP - 564
JO - Radiology
JF - Radiology
IS - 2
ER -