TY - JOUR
T1 - Maternally inherited rRNA triggers de novo nucleolus formation in porcine embryos
AU - Morovic, Martin
AU - Østrup, Olga
AU - Strejcek, Frantisek
AU - Benc, Michal
AU - Murin, Matej
AU - Jedlickova, Katarina
AU - Bartkova, Alexandra
AU - Lucas-Hahn, Andrea
AU - Pendovski, Lazo
AU - Laurincik, Jozef
PY - 2018/10
Y1 - 2018/10
N2 - SummaryThe present study examines the role of RNA polymerase I (RPI)-mediated transcription, maternally inherited rRNA and nucleolar proteins in the resumption of fibrillogranular nucleoli during embryonic genome activation (EGA) in porcine embryos. Late 4-cell embryos were incubated in the absence (control) or presence of actinomycin D (AD) (0.2 μg/ml for inhibition of RPI; 2.0 μg/ml for inhibition of total transcription) and late 2-cell embryos were cultured to the late 4-cell stage with 0.2 μg/ml AD to block EGA. Embryos were then processed for reverse-transcriptase polymerase chain reaction (RT-PCR), and for autoradiography (ARG), transmission electron microscopy (TEM), fluorescence in situ hybridization (FISH), silver staining and immunofluorescence (for RPI). Embryos in the control group displayed extranucleolar and intranucleolar ARG labelling, and exhibited de novo synthesis of rRNA and reticulated functional nucleoli. Nucleolar proteins were located in large foci. After RPI inhibition, nucleolar precursors transformed into segregated fibrillogranular structures, however no fibrillar centres were observed. The localization of rDNA and clusters of rRNA were detected in 57.1% immunoprecipitated (IP) analyzed nucleoli and dispersed RPI; 30.5% of nuclei showed large deposits of nucleolar proteins. Embryos from the AD-2.0 group did not display any transcriptional activity. Nucleolar formation was completely blocked, however 39.4% of nuclei showed rRNA clusters; 85.7% of nuclei were co-localized with nucleolar proteins. Long-term transcriptional inhibition resulted in the lack of ARG and RPI labelling; 40% of analyzed nuclei displayed the accumulation of rRNA molecules into large foci. In conclusion, maternally inherited rRNA co-localized with rDNA and nucleolar proteins can initiate a partial nucleolar assembly, resulting in the formation of fibrilogranular structures independently on activation of RPI-mediated transcription.
AB - SummaryThe present study examines the role of RNA polymerase I (RPI)-mediated transcription, maternally inherited rRNA and nucleolar proteins in the resumption of fibrillogranular nucleoli during embryonic genome activation (EGA) in porcine embryos. Late 4-cell embryos were incubated in the absence (control) or presence of actinomycin D (AD) (0.2 μg/ml for inhibition of RPI; 2.0 μg/ml for inhibition of total transcription) and late 2-cell embryos were cultured to the late 4-cell stage with 0.2 μg/ml AD to block EGA. Embryos were then processed for reverse-transcriptase polymerase chain reaction (RT-PCR), and for autoradiography (ARG), transmission electron microscopy (TEM), fluorescence in situ hybridization (FISH), silver staining and immunofluorescence (for RPI). Embryos in the control group displayed extranucleolar and intranucleolar ARG labelling, and exhibited de novo synthesis of rRNA and reticulated functional nucleoli. Nucleolar proteins were located in large foci. After RPI inhibition, nucleolar precursors transformed into segregated fibrillogranular structures, however no fibrillar centres were observed. The localization of rDNA and clusters of rRNA were detected in 57.1% immunoprecipitated (IP) analyzed nucleoli and dispersed RPI; 30.5% of nuclei showed large deposits of nucleolar proteins. Embryos from the AD-2.0 group did not display any transcriptional activity. Nucleolar formation was completely blocked, however 39.4% of nuclei showed rRNA clusters; 85.7% of nuclei were co-localized with nucleolar proteins. Long-term transcriptional inhibition resulted in the lack of ARG and RPI labelling; 40% of analyzed nuclei displayed the accumulation of rRNA molecules into large foci. In conclusion, maternally inherited rRNA co-localized with rDNA and nucleolar proteins can initiate a partial nucleolar assembly, resulting in the formation of fibrilogranular structures independently on activation of RPI-mediated transcription.
KW - Animals
KW - Autoradiography
KW - Blastocyst/cytology
KW - Cell Nucleolus/genetics
KW - Female
KW - Fertilization in Vitro
KW - Genome
KW - In Situ Hybridization, Fluorescence
KW - Male
KW - Maternal Inheritance
KW - Microscopy, Electron, Transmission
KW - RNA Polymerase I/genetics
KW - RNA, Ribosomal/genetics
KW - Reverse Transcriptase Polymerase Chain Reaction
KW - Swine
U2 - 10.1017/S0967199418000400
DO - 10.1017/S0967199418000400
M3 - Journal article
C2 - 30311594
SN - 0967-1994
VL - 26
SP - 395
EP - 402
JO - Zygote (Cambridge, England)
JF - Zygote (Cambridge, England)
IS - 5
ER -