TY - JOUR
T1 - Markers for neuronal degeneration in organotypic slice cultures
AU - Noraberg, J
AU - Kristensen, B W
AU - Zimmer, J
PY - 1999/1
Y1 - 1999/1
N2 - This protocol describes ways of monitoring spontaneous or induced neuronal degeneration in organotypic brain slice cultures. Hippocampal cultures (4-week-old) are grown in normal serum-free control medium, or exposed to the neurotoxin trimethyltin (TMT) (0.5-100 microM) for 24 h or the excitotoxic glutamate agonist kainic acid (KA) (5-25 microM) for 48 h followed by 24 h or 48 h, respectively, in normal medium. Corticostriatal slice cultures (also 4-week-old) are exposed to KA (6-24 microM) for 48 h and normal medium for control. The resulting neurodegeneration is estimated by (a) propidium iodide (PI) uptake, (b) lactate dehydrogenase (LDH) efflux to the culture medium, (c) ordinary Nissl cell staining, (d) staining by the neurodegenerative marker Fluoro-Jade (FJ), (e) neuronal microtubule degeneration by immunohistochemical staining for microtubule-associated protein 2 (MAP2), and (f) Timm sulphide silver staining for heavy metal alterations. Both hippocampal and corticostriatal slice cultures show a dose- and time-dependent increase in PI uptake and LDH efflux after exposure to TMT and KA. The mean PI uptake and the LDH efflux into the medium correlate well for both types of cultures. Both TMT and KA exposed hippocampal cultures display in vivo patterns of differential neuronal vulnerability as evidenced by PI uptake, FJ staining and MAP2 immunostaining. Corticostriatal slice cultures exposed to a high dose of KA display extensive striatal and cortical degeneration in FJ staining as suggested by a high PI uptake. A change in Timm sulphide silver staining in deep central parts of some control cultures, corresponds to areas with loss of cells in cell staining, loss of MAP2 staining, PI uptake, and FJ staining. We conclude that organotypic brain slice cultures, in combination with appropriate markers in standardized protocols, represent feasible means for studies of excitotoxic and neurotoxic compounds.
AB - This protocol describes ways of monitoring spontaneous or induced neuronal degeneration in organotypic brain slice cultures. Hippocampal cultures (4-week-old) are grown in normal serum-free control medium, or exposed to the neurotoxin trimethyltin (TMT) (0.5-100 microM) for 24 h or the excitotoxic glutamate agonist kainic acid (KA) (5-25 microM) for 48 h followed by 24 h or 48 h, respectively, in normal medium. Corticostriatal slice cultures (also 4-week-old) are exposed to KA (6-24 microM) for 48 h and normal medium for control. The resulting neurodegeneration is estimated by (a) propidium iodide (PI) uptake, (b) lactate dehydrogenase (LDH) efflux to the culture medium, (c) ordinary Nissl cell staining, (d) staining by the neurodegenerative marker Fluoro-Jade (FJ), (e) neuronal microtubule degeneration by immunohistochemical staining for microtubule-associated protein 2 (MAP2), and (f) Timm sulphide silver staining for heavy metal alterations. Both hippocampal and corticostriatal slice cultures show a dose- and time-dependent increase in PI uptake and LDH efflux after exposure to TMT and KA. The mean PI uptake and the LDH efflux into the medium correlate well for both types of cultures. Both TMT and KA exposed hippocampal cultures display in vivo patterns of differential neuronal vulnerability as evidenced by PI uptake, FJ staining and MAP2 immunostaining. Corticostriatal slice cultures exposed to a high dose of KA display extensive striatal and cortical degeneration in FJ staining as suggested by a high PI uptake. A change in Timm sulphide silver staining in deep central parts of some control cultures, corresponds to areas with loss of cells in cell staining, loss of MAP2 staining, PI uptake, and FJ staining. We conclude that organotypic brain slice cultures, in combination with appropriate markers in standardized protocols, represent feasible means for studies of excitotoxic and neurotoxic compounds.
KW - Animals
KW - Animals, Newborn
KW - Biomarkers
KW - Calcium Channels/metabolism
KW - Cells, Cultured
KW - Cerebral Cortex/chemistry
KW - Cobalt/metabolism
KW - Coloring Agents/metabolism
KW - Corpus Striatum/chemistry
KW - Excitatory Amino Acid Agonists/toxicity
KW - Fluorescent Dyes/metabolism
KW - Hippocampus/chemistry
KW - Image Processing, Computer-Assisted
KW - Ion Transport
KW - Kainic Acid/toxicity
KW - Microtubule-Associated Proteins/analysis
KW - Nerve Degeneration/chemically induced
KW - Nerve Tissue Proteins/analysis
KW - Neurons/chemistry
KW - Propidium/metabolism
KW - Rats
KW - Rats, Wistar
KW - Silver Staining/methods
KW - Tolonium Chloride/metabolism
U2 - 10.1016/s1385-299x(98)00050-6
DO - 10.1016/s1385-299x(98)00050-6
M3 - Journal article
C2 - 9974143
SN - 1385-299X
VL - 3
SP - 278
EP - 290
JO - Brain Research
JF - Brain Research
IS - 3
ER -