TY - JOUR
T1 - Location of brain lesions predicts conversion of clinically isolated syndromes to multiple sclerosis
AU - Giorgio, Antonio
AU - Battaglini, Marco
AU - Rocca, Maria Assunta
AU - De Leucio, Alessandro
AU - Absinta, Martina
AU - van Schijndel, Ronald
AU - Rovira, Alex
AU - Tintoré, Mar
AU - Chard, Declan
AU - Ciccarelli, Olga
AU - Enzinger, Christian
AU - Gasperini, Claudio
AU - Frederiksen, Jette
AU - Filippi, Massimo
AU - Barkhof, Frederik
AU - De Stefano, Nicola
AU - on behalf of the MAGNIMS Study Group
PY - 2013/1
Y1 - 2013/1
N2 - OBJECTIVES: To assess in a large population of patients with clinically isolated syndrome (CIS) the relevance of brain lesion location and frequency in predicting 1-year conversion to multiple sclerosis (MS). METHODS: In this multicenter, retrospective study, clinical and MRI data at onset and clinical follow-up at 1 year were collected for 1,165 patients with CIS. On T2-weighted MRI, we generated lesion probability maps of white matter (WM) lesion location and frequency. Voxelwise analyses were performed with a nonparametric permutation-based approach (p <0.05, cluster-corrected). RESULTS: In CIS patients with hemispheric, multifocal, and brainstem/cerebellar onset, lesion probability map clusters were seen in clinically eloquent brain regions. Significant lesion clusters were not found in CIS patients with optic nerve and spinal cord onset. At 1 year, clinically definite MS developed in 26% of patients. The converting group, despite a greater baseline lesion load compared with the nonconverting group (7 ± 8.1 cm(3) vs 4.6 ± 6.7 cm(3), p <0.001), showed less widespread lesion distribution (18% vs 25% of brain voxels occupied by lesions). High lesion frequency was found in the converting group in projection, association, and commissural WM tracts, with larger clusters being in the corpus callosum, corona radiata, and cingulum. CONCLUSIONS: Higher frequency of lesion occurrence in clinically eloquent WM tracts can characterize CIS subjects with different types of onset. The involvement of specific WM tracts, in particular those traversed by fibers involved in motor function and near the corpus callosum, seems to be associated with a higher risk of clinical conversion to MS in the short term.
AB - OBJECTIVES: To assess in a large population of patients with clinically isolated syndrome (CIS) the relevance of brain lesion location and frequency in predicting 1-year conversion to multiple sclerosis (MS). METHODS: In this multicenter, retrospective study, clinical and MRI data at onset and clinical follow-up at 1 year were collected for 1,165 patients with CIS. On T2-weighted MRI, we generated lesion probability maps of white matter (WM) lesion location and frequency. Voxelwise analyses were performed with a nonparametric permutation-based approach (p <0.05, cluster-corrected). RESULTS: In CIS patients with hemispheric, multifocal, and brainstem/cerebellar onset, lesion probability map clusters were seen in clinically eloquent brain regions. Significant lesion clusters were not found in CIS patients with optic nerve and spinal cord onset. At 1 year, clinically definite MS developed in 26% of patients. The converting group, despite a greater baseline lesion load compared with the nonconverting group (7 ± 8.1 cm(3) vs 4.6 ± 6.7 cm(3), p <0.001), showed less widespread lesion distribution (18% vs 25% of brain voxels occupied by lesions). High lesion frequency was found in the converting group in projection, association, and commissural WM tracts, with larger clusters being in the corpus callosum, corona radiata, and cingulum. CONCLUSIONS: Higher frequency of lesion occurrence in clinically eloquent WM tracts can characterize CIS subjects with different types of onset. The involvement of specific WM tracts, in particular those traversed by fibers involved in motor function and near the corpus callosum, seems to be associated with a higher risk of clinical conversion to MS in the short term.
U2 - 10.1212/WNL.0b013e31827debeb
DO - 10.1212/WNL.0b013e31827debeb
M3 - Journal article
C2 - 23223533
SN - 0028-3878
VL - 80
SP - 234
EP - 241
JO - Neurology
JF - Neurology
IS - 3
ER -