Forskning
Udskriv Udskriv
Switch language
Region Hovedstaden - en del af Københavns Universitetshospital
Udgivet

Linking glycemic dysregulation in diabetes to symptoms, comorbidities, and genetics through EHR data mining

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

DOI

  1. Apolipoprotein M-bound sphingosine-1-phosphate regulates blood-brain barrier paracellular permeability and transcytosis

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  2. Computational and cellular studies reveal structural destabilization and degradation of MLH1 variants in Lynch syndrome

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  3. Privatisation rescues function following loss of cooperation

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  4. Increase in clinically recorded type 2 diabetes after colectomy

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  5. Dnmt3a is an epigenetic mediator of adipose insulin resistance

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  1. Relation of cardiac adipose tissue to coronary calcification and myocardial microvascular function in type 1 and type 2 diabetes

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  2. The Effect of Overweight and Obesity on Liver Biochemical Markers in Children and Adolescents

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  3. Dynamic LED-light versus static LED-light for depressed inpatients: study protocol for a randomised clinical study

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

Vis graf over relationer

Diabetes is a diverse and complex disease, with considerable variation in phenotypic manifestation and severity. This variation hampers the study of etiological differences and reduces the statistical power of analyses of associations to genetics, treatment outcomes, and complications. We address these issues through deep, fine-grained phenotypic stratification of a diabetes cohort. Text mining the electronic health records of 14,017 patients, we matched two controlled vocabularies (ICD-10 and a custom vocabulary developed at the clinical center Steno Diabetes Center Copenhagen) to clinical narratives spanning a 19 year period. The two matched vocabularies comprise over 20,000 medical terms describing symptoms, other diagnoses, and lifestyle factors. The cohort is genetically homogeneous (Caucasian diabetes patients from Denmark) so the resulting stratification is not driven by ethnic differences, but rather by inherently dissimilar progression patterns and lifestyle related risk factors. Using unsupervised Markov clustering, we defined 71 clusters of at least 50 individuals within the diabetes spectrum. The clusters display both distinct and shared longitudinal glycemic dysregulation patterns, temporal co-occurrences of comorbidities, and associations to single nucleotide polymorphisms in or near genes relevant for diabetes comorbidities.

OriginalsprogEngelsk
Artikelnummere44941
TidsskrifteLife
Vol/bind8
Antal sider19
ISSN2050-084X
DOI
StatusUdgivet - 10 dec. 2019

ID: 58624288