Forskning
Udskriv Udskriv
Switch language
Region Hovedstaden - en del af Københavns Universitetshospital
Udgivet

Light-load resistance exercise increases muscle protein synthesis and hypertrophy signaling in elderly men

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

Harvard

APA

CBE

MLA

Vancouver

Author

Bibtex

@article{446ea321d73c4d1cb0eda8ee38af76b3,
title = "Light-load resistance exercise increases muscle protein synthesis and hypertrophy signaling in elderly men",
abstract = "The present study investigated whether well-tolerated light-load resistance exercise (LL-RE) affects skeletal muscle fractional synthetic rate (FSR) and anabolic intracellular signaling as a way to counteract age-related loss of muscle mass. Untrained healthy elderly (>65-yr-old) men were subjected to 13 h of supine rest. After 2.5 h of rest, unilateral LL-RE, consisting of leg extensions (10 sets, 36 repetitions) at 16{\%} of 1 repetition maximum (RM), was conducted. Subsequently, the subjects were randomized to oral intake of 4 g of whey protein per hour (PULSE, n = 10), 28 g of whey protein at 0 h and 12 g of whey protein at 7 h postexercise (BOLUS, n = 10), or 4 g of maltodextrin per hour (placebo, n = 10). Quadriceps muscle biopsies were taken at 0, 3, 7, and 10 h postexercise from the resting and the exercised leg of each subject. Myofibrillar FSR and activity of select targets from the mechanistic target of rapamycin complex 1-signaling cascade were analyzed from the biopsies. LL-RE increased myofibrillar FSR compared with the resting leg throughout the 10-h postexercise period. Phosphorylated (T308) AKT expression increased in the exercised leg immediately after exercise. This increase persisted in the placebo group only. Levels of phosphorylated (T37/46) eukaryotic translation initiation factor 4E-binding protein 1 increased throughout the postexercise period in the exercised leg in the placebo and BOLUS groups and peaked at 7 h. In all three groups, phosphorylated (T56) eukaryotic elongation factor 2 decreased in response to LL-RE. We conclude that resistance exercise at only 16{\%} of 1 RM increased myofibrillar FSR, irrespective of nutrient type and feeding pattern, which indicates an anabolic effect of LL-RE in elderly individuals. This finding was supported by increased signaling for translation initiation and translation elongation in response to LL-RE.",
keywords = "Aged, Exercise, Humans, Male, Muscle Proteins, Muscle, Skeletal, Phosphorylation, Protein Biosynthesis, Proto-Oncogene Proteins c-akt, Resistance Training, Signal Transduction, Treatment Outcome, Whey Proteins, Journal Article, Randomized Controlled Trial",
author = "Jakob Agergaard and Jacob B{\"u}low and Jensen, {Jacob K} and S{\o}ren Reitelseder and Drummond, {Micah J} and Peter Schjerling and Thomas Scheike and Anja Serena and Lars Holm",
note = "Copyright {\circledC} 2017 the American Physiological Society.",
year = "2017",
month = "4",
day = "1",
doi = "10.1152/ajpendo.00164.2016",
language = "English",
volume = "312",
pages = "E326--E338",
journal = "American Journal of Physiology: Endocrinology and Metabolism",
issn = "0193-1849",
publisher = "American Physiological Society",
number = "4",

}

RIS

TY - JOUR

T1 - Light-load resistance exercise increases muscle protein synthesis and hypertrophy signaling in elderly men

AU - Agergaard, Jakob

AU - Bülow, Jacob

AU - Jensen, Jacob K

AU - Reitelseder, Søren

AU - Drummond, Micah J

AU - Schjerling, Peter

AU - Scheike, Thomas

AU - Serena, Anja

AU - Holm, Lars

N1 - Copyright © 2017 the American Physiological Society.

PY - 2017/4/1

Y1 - 2017/4/1

N2 - The present study investigated whether well-tolerated light-load resistance exercise (LL-RE) affects skeletal muscle fractional synthetic rate (FSR) and anabolic intracellular signaling as a way to counteract age-related loss of muscle mass. Untrained healthy elderly (>65-yr-old) men were subjected to 13 h of supine rest. After 2.5 h of rest, unilateral LL-RE, consisting of leg extensions (10 sets, 36 repetitions) at 16% of 1 repetition maximum (RM), was conducted. Subsequently, the subjects were randomized to oral intake of 4 g of whey protein per hour (PULSE, n = 10), 28 g of whey protein at 0 h and 12 g of whey protein at 7 h postexercise (BOLUS, n = 10), or 4 g of maltodextrin per hour (placebo, n = 10). Quadriceps muscle biopsies were taken at 0, 3, 7, and 10 h postexercise from the resting and the exercised leg of each subject. Myofibrillar FSR and activity of select targets from the mechanistic target of rapamycin complex 1-signaling cascade were analyzed from the biopsies. LL-RE increased myofibrillar FSR compared with the resting leg throughout the 10-h postexercise period. Phosphorylated (T308) AKT expression increased in the exercised leg immediately after exercise. This increase persisted in the placebo group only. Levels of phosphorylated (T37/46) eukaryotic translation initiation factor 4E-binding protein 1 increased throughout the postexercise period in the exercised leg in the placebo and BOLUS groups and peaked at 7 h. In all three groups, phosphorylated (T56) eukaryotic elongation factor 2 decreased in response to LL-RE. We conclude that resistance exercise at only 16% of 1 RM increased myofibrillar FSR, irrespective of nutrient type and feeding pattern, which indicates an anabolic effect of LL-RE in elderly individuals. This finding was supported by increased signaling for translation initiation and translation elongation in response to LL-RE.

AB - The present study investigated whether well-tolerated light-load resistance exercise (LL-RE) affects skeletal muscle fractional synthetic rate (FSR) and anabolic intracellular signaling as a way to counteract age-related loss of muscle mass. Untrained healthy elderly (>65-yr-old) men were subjected to 13 h of supine rest. After 2.5 h of rest, unilateral LL-RE, consisting of leg extensions (10 sets, 36 repetitions) at 16% of 1 repetition maximum (RM), was conducted. Subsequently, the subjects were randomized to oral intake of 4 g of whey protein per hour (PULSE, n = 10), 28 g of whey protein at 0 h and 12 g of whey protein at 7 h postexercise (BOLUS, n = 10), or 4 g of maltodextrin per hour (placebo, n = 10). Quadriceps muscle biopsies were taken at 0, 3, 7, and 10 h postexercise from the resting and the exercised leg of each subject. Myofibrillar FSR and activity of select targets from the mechanistic target of rapamycin complex 1-signaling cascade were analyzed from the biopsies. LL-RE increased myofibrillar FSR compared with the resting leg throughout the 10-h postexercise period. Phosphorylated (T308) AKT expression increased in the exercised leg immediately after exercise. This increase persisted in the placebo group only. Levels of phosphorylated (T37/46) eukaryotic translation initiation factor 4E-binding protein 1 increased throughout the postexercise period in the exercised leg in the placebo and BOLUS groups and peaked at 7 h. In all three groups, phosphorylated (T56) eukaryotic elongation factor 2 decreased in response to LL-RE. We conclude that resistance exercise at only 16% of 1 RM increased myofibrillar FSR, irrespective of nutrient type and feeding pattern, which indicates an anabolic effect of LL-RE in elderly individuals. This finding was supported by increased signaling for translation initiation and translation elongation in response to LL-RE.

KW - Aged

KW - Exercise

KW - Humans

KW - Male

KW - Muscle Proteins

KW - Muscle, Skeletal

KW - Phosphorylation

KW - Protein Biosynthesis

KW - Proto-Oncogene Proteins c-akt

KW - Resistance Training

KW - Signal Transduction

KW - Treatment Outcome

KW - Whey Proteins

KW - Journal Article

KW - Randomized Controlled Trial

U2 - 10.1152/ajpendo.00164.2016

DO - 10.1152/ajpendo.00164.2016

M3 - Journal article

VL - 312

SP - E326-E338

JO - American Journal of Physiology: Endocrinology and Metabolism

JF - American Journal of Physiology: Endocrinology and Metabolism

SN - 0193-1849

IS - 4

ER -

ID: 52370731