Forskning
Udskriv Udskriv
Switch language
Region Hovedstaden - en del af Københavns Universitetshospital
Udgivet

Lesion dimensions during temperature-controlled radiofrequency catheter ablation of left ventricular porcine myocardium: impact of ablation site, electrode size, and convective cooling

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  1. Acute COVID-19 and the Incidence of Ischemic Stroke and Acute Myocardial Infarction

    Publikation: Bidrag til tidsskriftLetterForskningpeer review

  2. Prevalence of Infective Endocarditis in Streptococcal Bloodstream Infections is Dependent on Streptococcal Species

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  3. Transethnic Genome-Wide Association Study Provides Insights in the Genetic Architecture and Heritability of Long QT Syndrome

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  1. Renal 123I-MIBG Uptake before and after Live-Donor Kidney Transplantation

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  2. Defibrillators for prevention from sudden cardiac death: is it that easy?-Authors' reply

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

Vis graf over relationer

BACKGROUND: It is important to increase lesion size to improve the success rate for radiofrequency ablation of ischemic ventricular tachycardia. This study of radiofrequency ablation, with adjustment of power to approach a preset target temperature, ie, temperature-controlled ablation, explores the effect of catheter-tip length, ablation site, and convective cooling on lesion dimensions.

METHODS AND RESULTS: In vitro strips of porcine left ventricular myocardium during different levels of convective cooling and in vivo pig hearts at 2 or 3 left ventricular sites were ablated with 2- to 12-mm-tip catheters. We found increased lesion volume for increased catheter-tip length </=8 mm in vitro (P<0.05) and 6 mm in vivo (P<0. 0001), but no further increase was found for longer tips. For the 4- to 10-mm catheter tips, we found smaller lesion volume in low-flow areas (apex) than in high-flow areas (free wall and septum) (P<0.05). Increasing convective cooling of the catheter tip in vitro increased lesion volume (P<0.0005) for the 4- and 8-mm tips but not for the 12-mm tip as the generator reached maximum output. In contrast to power-controlled ablation, we found a negative correlation between tip temperature reached and lesion volume for applications in which maximum generator output was not achieved (P<0. 0001), whereas delivered power and lesion volume correlated positively (P<0.0001).

CONCLUSIONS: Lesion size differs in different left ventricular target sites, which is probably related to convective cooling, as illustrated in vitro. Longer electrode tips increase lesion size for tip lengths </=6 to 8 mm. For temperature-controlled ablation, the tip temperature achieved is a poor predictor of lesion size.

OriginalsprogEngelsk
TidsskriftCirculation (Baltimore)
Vol/bind99
Udgave nummer2
Sider (fra-til)319-25
Antal sider7
ISSN0009-7322
StatusUdgivet - 19 jan. 1999

ID: 51663724