TY - JOUR
T1 - LC-MS/MS method for quantitative profiling of ketone bodies, α-keto acids, lactate, pyruvate and their stable isotopically labelled tracers in human plasma
T2 - An analytical panel for clinical metabolic kinetics and interactions
AU - Afshar, Minoo
AU - van Hall, Gerrit
N1 - Copyright © 2023 The Author(s). Published by Elsevier B.V. All rights reserved.
PY - 2023
Y1 - 2023
N2 - An important area within clinical research is in vivo metabolism of ketone bodies (β-hydroxybutyrate and acetoacetate) and in connection metabolites that may affect their production and/or cellular transport such as the keto-acids from the branched-chain amino acids, lactate and pyruvate. To determine in vivo metabolite turnover, availability of accurate and sensitive methods for analyzing the plasma concentrations of these metabolites and their stable isotopically labeled enrichments is mandatory. Therefore, the present study describes a high-performance liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for simultaneous analysis of ketone bodies, α-keto acids, lactate, pyruvate, and their tracer enrichments in humans using 2 different derivatization techniques with 4-bromo-N-methylbenzylamine and O-benzylhydroxylamine as derivatization reagents, and 1-ethyl-3-dimethylaminopropyl carbodiimide as coupling compound followed by a single LC-MS/MS run. The method was validated for matrix effects, linearity, accuracy, precision, recovery, stability, and enrichment (ratio) analysis of a stable isotopically labelled analytes (tracers) continuously infused in humans divided by the unlabeled endogenous analyte (tracee) that makes it possible to quantify the analyte in vivo synthesis and degradation rates. The applied parallel derivatization procedure yielded good sensitivity for all analytes of interest and their tracers. Despite the double derivatization method, mixing the ethyl acetate portions at the final stage made it possible to simultaneously analyze all compounds in a single LC-MS/MS run. Moreover, the liquid chromatography method was optimized to robustly quantify the keto acids derived from leucine (α-keto-isocaproic acid) and isoleucine (α-keto-β-methylvaleric acid), the compounds with similar chemical structure and identical molecular weights. The presented method is designed and validated for human plasma. However, care should be taken in blood sampling and processing procedures as well as quick freezing and storage at -80 °C due to the instability of especially acetoacetate.
AB - An important area within clinical research is in vivo metabolism of ketone bodies (β-hydroxybutyrate and acetoacetate) and in connection metabolites that may affect their production and/or cellular transport such as the keto-acids from the branched-chain amino acids, lactate and pyruvate. To determine in vivo metabolite turnover, availability of accurate and sensitive methods for analyzing the plasma concentrations of these metabolites and their stable isotopically labeled enrichments is mandatory. Therefore, the present study describes a high-performance liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for simultaneous analysis of ketone bodies, α-keto acids, lactate, pyruvate, and their tracer enrichments in humans using 2 different derivatization techniques with 4-bromo-N-methylbenzylamine and O-benzylhydroxylamine as derivatization reagents, and 1-ethyl-3-dimethylaminopropyl carbodiimide as coupling compound followed by a single LC-MS/MS run. The method was validated for matrix effects, linearity, accuracy, precision, recovery, stability, and enrichment (ratio) analysis of a stable isotopically labelled analytes (tracers) continuously infused in humans divided by the unlabeled endogenous analyte (tracee) that makes it possible to quantify the analyte in vivo synthesis and degradation rates. The applied parallel derivatization procedure yielded good sensitivity for all analytes of interest and their tracers. Despite the double derivatization method, mixing the ethyl acetate portions at the final stage made it possible to simultaneously analyze all compounds in a single LC-MS/MS run. Moreover, the liquid chromatography method was optimized to robustly quantify the keto acids derived from leucine (α-keto-isocaproic acid) and isoleucine (α-keto-β-methylvaleric acid), the compounds with similar chemical structure and identical molecular weights. The presented method is designed and validated for human plasma. However, care should be taken in blood sampling and processing procedures as well as quick freezing and storage at -80 °C due to the instability of especially acetoacetate.
UR - http://www.scopus.com/inward/record.url?scp=85175614515&partnerID=8YFLogxK
U2 - 10.1016/j.jchromb.2023.123906
DO - 10.1016/j.jchromb.2023.123906
M3 - Journal article
C2 - 37925904
SN - 1570-0232
VL - 1230
JO - Journal of Chromatography. B, Analytical Technologies in the Biomedical and Life Sciences
JF - Journal of Chromatography. B, Analytical Technologies in the Biomedical and Life Sciences
M1 - 123906
ER -