Forskning
Udskriv Udskriv
Switch language
Region Hovedstaden - en del af Københavns Universitetshospital
Udgivet

Large-scale transcriptome-wide association study identifies new prostate cancer risk regions

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

DOI

  1. Combined burden and functional impact tests for cancer driver discovery using DriverPower

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  2. Genomic footprints of activated telomere maintenance mechanisms in cancer

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  3. Pathway and network analysis of more than 2500 whole cancer genomes

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  4. Prenatal dietary supplements influence the infant airway microbiota in a randomized factorial clinical trial

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  1. Reply to: Clinical impact of high platelet count and high hematocrit, by Marc Sorigue

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  2. Obesity as a Causal Risk Factor for Aortic Valve Stenosis

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  3. Lipoprotein(a) Reduction in Persons with Cardiovascular Disease

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

Vis graf over relationer

Although genome-wide association studies (GWAS) for prostate cancer (PrCa) have identified more than 100 risk regions, most of the risk genes at these regions remain largely unknown. Here we integrate the largest PrCa GWAS (N = 142,392) with gene expression measured in 45 tissues (N = 4458), including normal and tumor prostate, to perform a multi-tissue transcriptome-wide association study (TWAS) for PrCa. We identify 217 genes at 84 independent 1 Mb regions associated with PrCa risk, 9 of which are regions with no genome-wide significant SNP within 2 Mb. 23 genes are significant in TWAS only for alternative splicing models in prostate tumor thus supporting the hypothesis of splicing driving risk for continued oncogenesis. Finally, we use a Bayesian probabilistic approach to estimate credible sets of genes containing the causal gene at a pre-defined level; this reduced the list of 217 associations to 109 genes in the 90% credible set. Overall, our findings highlight the power of integrating expression with PrCa GWAS to identify novel risk loci and prioritize putative causal genes at known risk loci.

OriginalsprogEngelsk
TidsskriftNature Communications
Vol/bind9
Udgave nummer1
Sider (fra-til)4079
ISSN2041-1723
DOI
StatusUdgivet - 4 okt. 2018

ID: 59308181