K(V)7.4 channels participate in the control of rodent renal vascular resting tone

M Salomonsson, J C Brasen, T H Braunstein, P Hagelqvist, N-H Holstein-Rathlou, C M Sorensen

11 Citationer (Scopus)

Abstract

AIM: We tested the hypothesis that K(V)7 channels contribute to basal renal vascular tone and that they participate in agonist-induced renal vasoconstriction or vasodilation.

METHODS: KV 7 channel subtypes in renal arterioles were characterized by immunofluorescence. Renal blood flow (RBF) was measured using an ultrasonic flow probe. The isometric tension of rat interlobar arteries was examined in a wire myograph. Mice afferent arteriolar diameter was assessed utilizing the perfused juxtamedullary nephron technique.

RESULTS: Immunofluorescence revealed that K(V)7.4 channels were expressed in rat afferent arterioles. The K(V)7 blocker XE991 dose-dependently increased the isometric tension of rat interlobar arteries and caused a small (approx. 4.5%) RBF reduction in vivo. Nifedipine abolished these effects. Likewise, XE991 reduced mouse afferent arteriolar diameter by approx. 5%. The K(V)7.2-5 stimulator flupirtine dose-dependently relaxed isolated rat interlobar arteries and increased (approx. 5%) RBF in vivo. The RBF responses to NE or Ang II administration were not affected by pre-treatment with XE991 or flupirtine. XE991 pre-treatment caused a minor augmentation of the acetylcholine-induced increase in RBF, while flupirtine pre-treatment did not affect this response.

CONCLUSION: It is concluded that K(V)7 channels, via nifedipine sensitive channels, have a role in the regulation of basal renal vascular tone. There is no indication that K(V)7 channels have an effect on agonist-induced renal vasoconstriction while there is a small effect on acetylcholine-induced vasodilation.

OriginalsprogEngelsk
TidsskriftActa physiologica (Oxford, England)
Vol/bind214
Udgave nummer3
Sider (fra-til)402-14
Antal sider13
ISSN1748-1716
DOI
StatusUdgivet - jul. 2015
Udgivet eksterntJa

Fingeraftryk

Dyk ned i forskningsemnerne om 'K(V)7.4 channels participate in the control of rodent renal vascular resting tone'. Sammen danner de et unikt fingeraftryk.

Citationsformater