Forskning
Udskriv Udskriv
Switch language
Region Hovedstaden - en del af Københavns Universitetshospital
Udgivet

KRAS mutations in the parental tumour accelerate in vitro growth of tumoroids established from colorectal adenocarcinoma

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

DOI

  1. Effects of long-acting somatostatin analogues on redox systems in rat lens in experimental diabetes

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  1. Open ventral hernia repair with a composite ventral patch - final results of a multicenter prospective study

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  2. Large Incisional Hernias Increase in Size

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

Vis graf over relationer

The aim of the present study was to characterize a patient-derived in vitro 3D model (ie tumoroid) established from colorectal adenocarcinoma. This study investigated the growth rate of tumoroids and whether the Kirsten rat sarcoma (KRAS) mutations in the parental tumour accelerate this rate. The tumoroids were established from surgical resections of primary and metastatic colorectal adenocarcinoma from 26 patients. The in vitro growth rate of these tumoroids was monitored by automated imaging and recorded as relative growth rate. The KRAS hotspot mutations were investigated on the parental tumours by Ion Torrent™ next-generation sequencing. The KRAS mutations were detected in 58% of the parental tumours, and a significantly higher growth rate was observed for tumoroids established from the KRAS-mutated tumours compared to wild-type tumours (P < 0.0001). The average relative growth rate (log10) on day 10 was 0.360 ± 0.180 (mean ± SD) for the KRAS-mutated group and 0.098 ± 0.135 (mean ± SD) for the KRAS wild-type group. These results showed that the presence of KRAS mutations in parental tumours is associated with an acceleration of the growth rate of tumoroids. The future perspective for such a model could be the implementation of chemoassays for personalized medicine.

OriginalsprogEngelsk
TidsskriftInternational Journal of Experimental Pathology
Vol/bind100
Udgave nummer1
Sider (fra-til)12-18
Antal sider7
ISSN0959-9673
DOI
StatusUdgivet - feb. 2019

Bibliografisk note

© 2019 The Authors. International Journal of Experimental Pathology © 2019 International Journal of Experimental Pathology.

ID: 57240326