Forskning
Udskriv Udskriv
Switch language
Region Hovedstaden - en del af Københavns Universitetshospital
Udgivet

KATP channels modulate cerebral blood flow and oxygen delivery during isocapnic hypoxia in humans

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

DOI

  1. A physiological model of the inflammatory-thermal-pain-cardiovascular interactions during an endotoxin challenge

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  2. Regulation of plasma volume in male lowlanders during 4 days of exposure to hypobaric hypoxia equivalent to 3500 m altitude

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  3. Insulin-stimulated glucose uptake partly relies on p21-activated kinase (PAK)2, but not PAK1, in mouse skeletal muscle

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  4. Heterogeneity in subcellular muscle glycogen utilisation during exercise impacts endurance capacity in men

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  5. The impact of loading, unloading, ageing and injury on the human tendon

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  1. Mesenteric traction syndrome in pigs: A single-blinded, randomized controlled trial

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  2. Cardiorespiratory responses to high intensity skeletal muscle metaboreflex activation in chronic obstructive pulmonary disease

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  3. Cerebral vs. Cardiovascular Responses to Exercise in Type 2 Diabetic Patients

    Publikation: Bidrag til tidsskriftReviewForskningpeer review

  • Marcos P Rocha
  • Monique O Campos
  • João D Mattos
  • Daniel E Mansur
  • Helena N M Rocha
  • Niels H Secher
  • Antonio C L Nóbrega
  • Igor A Fernandes
Vis graf over relationer

KEY POINTS: ATP-sensitive K+ (KATP ) channels mediate hypoxia-induced cerebral vasodilatation and hyperperfusion in animals. We tested whether KATP channels blockade affects the increase in human cerebral blood flow (CBF) and the maintenance of oxygen delivery (CDO2 ) during hypoxia. Hypoxia-induced increases in the anterior circulation and total cerebral perfusion were attenuated under KATP channels blockade affecting the relative changes of brain oxygen delivery. Therefore, in humans, KATP channels activation modulates the vascular tone in the anterior circulation of the brain, contributing to CBF and CDO2 responses to hypoxia.

ABSTRACT: ATP-sensitive K+ (KATP ) channels mediate hypoxia-induced cerebral vasodilatation and hyperperfusion in animals. We tested whether KATP channels blockade affects the increase in cerebral blood flow (CBF) and the maintenance of oxygen delivery (CDO2 ) during hypoxia in humans. Nine healthy men were exposed to 5-min trials of normoxia and isocapnic hypoxia (IHX, 10% O2 ) before (BGB) and 3 h after glibenclamide ingestion (AGB). Mean arterial pressure (MAP), arterial saturation ( S a O 2 ), partial pressure of oxygen ( P a O 2 ) and carbon dioxide ( P aC O 2 ), internal carotid artery blood flow (ICABF), vertebral artery blood flow (VABF), total (t)CBF (Doppler ultrasound) and CDO2 were quantified during the trials. IHX provoked similar reductions in S a O 2 and P a O 2 , while MAP was not affected by oxygen desaturation or KATP blockade. A smaller increase in ICABF (ΔBGB: 36 ± 23 vs. ΔAGB 11 ± 18%, p = 0.019) but not in VABF (∆BGB 26 ± 21 vs. ∆AGB 27 ± 27%, p = 0.893) was observed during the hypoxic trial under KATP channels blockade. Thus, IHX-induced increases in tCBF (∆BGB 32 ± 19 vs. ∆AGB 14 ± 13%, p = 0.012) and CDO2 relative changes (∆BGB 7 ± 13 vs. ∆AGB -6 ± 14%, p = 0.048) were attenuated during the AGB hypoxic trial. In a separate protocol, 6 healthy men (5 from protocol 1) underwent a 5-min exposure to normoxia and IHX before and 3 h after placebo (5 mg of cornstarch) ingestion. IHX reduced S a O 2 and P a O 2 , but placebo did not affect the ICABF, VABF, tCBF, or CDO2 responses. Therefore, in humans, KATP channels activation modulates vascular tone in the anterior rather than the posterior circulation of the brain, contributing to tCBF and CDO2 responses to hypoxia.

OriginalsprogEngelsk
TidsskriftThe Journal of physiology
Vol/bind598
Udgave nummer16
Sider (fra-til)3343-3356
Antal sider14
ISSN0022-3751
DOI
StatusUdgivet - aug. 2020

Bibliografisk note

© 2020 The Authors. The Journal of Physiology © 2020 The Physiological Society.

ID: 62409072